On Improving the Predictable Accuracy of Reduced-order Models for Fluid Flows
Date
2020
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
The proper orthogonal decomposition (POD) is a classic method to construct empirical, linear modal bases which are optimal in a mean L2 sense. A subset of these modes can form the basis of a dynamical reduced-order model (ROM) of a physical system, including nonlinear, chaotic systems like fluid flows. While these POD-based ROMs can accurately simulate complex fluid dynamics, a priori model accuracy and stability estimates are unreliable. The work presented in this dissertation focuses on improving the predictability and accuracy of POD-based fluid ROMs. This is accomplished by ensuring several kinematically significant flow characteristics -- both at large scales and small -- are satisfied within the truncated bases. Several new methods of constructing and employing modal bases within this context are developed and tested. Reduced-order models of periodic flows are shown to be predictably accurate with high confidence; the predictable accuracy of quasi-periodic and chaotic fluid flow ROMs is increased significantly relative to existing approaches.
Type
Department
Description
Provenance
Citation
Permalink
Citation
Lee, Michael William (2020). On Improving the Predictable Accuracy of Reduced-order Models for Fluid Flows. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/20892.
Collections
Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.