A model to predict risk of postpartum infection after Caesarean delivery

Loading...
Thumbnail Image

Date

2017-07-12

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

144
views
772
downloads

Citation Stats

Abstract

The purpose of this study is to build and validate a statistical model to predict infection after caesarean delivery (CD). Methods: Patient and surgical variables within 30 d of CD were collected on 2419 women. Postpartum infection included surgical site infection, urinary tract infection, endomyometritis and pneumonia. The data were split into model development and internal validation (1 January–31 August; N = 1641) and temporal validation subsets (1 September–31 December; N = 778). Logistic regression models were fit to the data with concordance index and calibration curves used to assess accuracy. Internal validation was performed with bootstrapping correcting for bias. Results: Postoperative infection occurred in 8% (95% CI 7.3–9.9), with 5% meeting CDC criteria for surgical site infections (SSI) (95% CI 4.1–5.8). Eight variables were predictive for infection: increasing BMI, higher number of prior Caesarean deliveries, emergent Caesarean delivery, Caesarean for failure to progress, skin closure using stainless steel staples, chorioamnionitis, maternal asthma and lower gestational age. The model discriminated between women with and without infection on internal validation (concordance index = 0.71 95% CI 0.67–0.76) and temporal validation (concordance index = 0.70, 95% CI 0.62, 0.78). Conclusions: Our model accurately predicts risk of infection after CD. Identification of patients at risk for postoperative infection allows for individualized patient care and counseling.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1080/14767058.2017.1344632

Publication Info

Moulton, Laura J, J Eric Jelovsek, Mark Lachiewicz, Kevin Chagin and Oluwatosin Goje (2017). A model to predict risk of postpartum infection after Caesarean delivery. Journal of Maternal-Fetal and Neonatal Medicine. pp. 1–9. 10.1080/14767058.2017.1344632 Retrieved from https://hdl.handle.net/10161/15108.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.