Construction of invisibility cloaks of arbitrary shape and size using planar layers of metamaterials

Loading...
Thumbnail Image

Date

2012-06-15

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

204
views
664
downloads

Citation Stats

Abstract

Transformation optics (TO) is a powerful tool for the design of electromagnetic and optical devices with novel functionality derived from the unusual properties of the transformation media. In general, the fabrication of TO media is challenging, requiring spatially varying material properties with both anisotropic electric and magnetic responses. Though metamaterials have been proposed as a path for achieving such complex media, the required properties arising from the most general transformations remain elusive, and cannot implemented by state-of-the-art fabrication techniques. Here, we propose faceted approximations of TO media of arbitrary shape in which the volume of the TO device is divided into flat metamaterial layers. These layers can be readily implemented by standard fabrication and stacking techniques. We illustrate our approximation approach for the specific example of a two-dimensional, omnidirectional "invisibility cloak", and quantify its performance using the total scattering cross section as a practical figure of merit. © 2012 American Institute of Physics.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1063/1.4729012

Publication Info

Paul, O, Y Urzhumov, C Elsen, D Smith and M Rahm (2012). Construction of invisibility cloaks of arbitrary shape and size using planar layers of metamaterials. Journal of Applied Physics, 111(12). p. 123106. 10.1063/1.4729012 Retrieved from https://hdl.handle.net/10161/7570.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Smith

David R. Smith

James B. Duke Distinguished Professor of Electrical and Computer Engineering

Dr. David R. Smith is currently the James B. Duke Professor of Electrical and Computer Engineering Department at Duke University. He is also Director of the Center for Metamaterials and Integrated Plasmonics at Duke and holds the positions of Adjunct Associate Professor in the Physics Department at the University of California, San Diego, and Visiting Professor of Physics at Imperial College, London. Dr. Smith received his Ph.D. in 1994 in Physics from the University of California, San Diego (UCSD). Dr. Smith's research interests include the theory, simulation and characterization of unique electromagnetic structures, including photonic crystals and metamaterials.

Smith is best known for his theoretical and experimental work on electromagnetic metamaterials. Metamaterials are artificially structured materials, whose electromagnetic properties can be tailored and tuned in ways not easily accomplished with conventional materials. Smith has been at the forefront in the development of numerical methods to design and characterize metamaterials, and has also provided many of the key experiments that have helped to illustrate the potential that metamaterials offer. Smith and his colleagues at UCSD demonstrated the first left-handed (or negative index) metamaterial at microwave frequencies in 2000--a material that had been predicted theoretically more than thirty years prior by Russian physicist Victor Veselago. No naturally occurring material or compound with a negative index-of-refraction had ever been reported until this experiment. In 2001, Smith and colleagues followed up with a second experiment confirming one of Veselago's key conjectures: the 'reversal' of Snell's law. These two papers--the first published in Physical Review Letters and the second in Science--generated enormous interest throughout the community in the possibility of metamaterials to extend and augment the properties of conventional materials. Both papers have now been cited more than 3,000 times each.

Since those first metamaterial experiments, Smith has continued to study the fundamentals and potential applications of negative index media and metamaterials. In 2004, Smith began studying the potential of metamaterials as a means to produce novel gradient index media. By varying the index-of-refraction throughout a material, an entire class of optical elements (such as lenses) can be formed. Smith showed that metamaterials could access a much larger range of design space, since both the magnetic and the electric properties could be graded independently. Smith and colleagues demonstrated several versions of gradient index optics, an activity that continues in his lab today. The introduction of controlled spatial gradients in the electromagnetic properties of a metamaterial flows naturally into the broad concept of transformation optics - a new electromagnetic design approach proposed by Sir John Pendry in 2006. To illustrate of the novelty of this design approach, Pendry, Schurig and Smith suggested in 2006 that an 'invisibility cloak' could be realized by a metamaterial implementation of a transformation optical design. Later that same year, Smith's group at Duke University reported the demonstration of a transformation optical designed 'invisibility cloak' at microwave frequencies. The concept of transformation optics has since attracted the attention of the scientific community, and is now a rapidly emerging sub-discipline in the field.

Smith's work on transformation optics has been featured in nearly every major newspaper, including a cover story in USA Today, The New York Times, The Chicago Tribune, The Wall Street Journal, The Washington Post and many more. Smith and his work on cloaking have also been featured on television news programs inlcuding The Today Show, Countdown with Keith Olbermann, Fox News, CNN and MSNBC. Smith's work has also been highlighted in documentary programs on The History Channel, The Discovery Channel, The Science Channel, the BBC and others.

Please also see Prof. Smith's personal website at http://people.ee.duke.edu/~drsmith for the most frequent updates.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.