Time evolution of a mean-field generalized contact process
dc.contributor.author | Chariker, Logan | |
dc.contributor.author | Lebowitz, Joel L | |
dc.date.accessioned | 2022-12-17T21:33:46Z | |
dc.date.available | 2022-12-17T21:33:46Z | |
dc.date.issued | 2022-02-01 | |
dc.date.updated | 2022-12-17T21:33:46Z | |
dc.description.abstract | <jats:title>Abstract</jats:title> <jats:p>We investigate the macroscopic time evolution and stationary states of a mean field discrete voltage neuron model, or equivalently, a generalized contact process in <jats:inline-formula> <jats:tex-math></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:msup> <mml:mrow> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jstatac4985ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>. The model is described by a coupled set of nonlinear integral-differential equations. It was inspired by a model of neurons with discrete voltages evolving by a stochastic integrate and fire mechanism. We obtain a complete solution in the spatially uniform case and partial solutions in the general case. The system has one or more fixed points and also traveling wave solutions.</jats:p> | |
dc.identifier.issn | 1742-5468 | |
dc.identifier.uri | ||
dc.publisher | IOP Publishing | |
dc.relation.ispartof | Journal of Statistical Mechanics: Theory and Experiment | |
dc.relation.isversionof | 10.1088/1742-5468/ac4985 | |
dc.title | Time evolution of a mean-field generalized contact process | |
dc.type | Journal article | |
pubs.begin-page | 023502 | |
pubs.end-page | 023502 | |
pubs.issue | 2 | |
pubs.organisational-group | Duke | |
pubs.organisational-group | Trinity College of Arts & Sciences | |
pubs.organisational-group | Mathematics | |
pubs.publication-status | Published | |
pubs.volume | 2022 |
Files
Original bundle
- Name:
- Chariker_2022_J._Stat._Mech._2022_023502.pdf
- Size:
- 938.08 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published version