Time evolution of a mean-field generalized contact process

dc.contributor.author

Chariker, Logan

dc.contributor.author

Lebowitz, Joel L

dc.date.accessioned

2022-12-17T21:33:46Z

dc.date.available

2022-12-17T21:33:46Z

dc.date.issued

2022-02-01

dc.date.updated

2022-12-17T21:33:46Z

dc.description.abstract

<jats:title>Abstract</jats:title> <jats:p>We investigate the macroscopic time evolution and stationary states of a mean field discrete voltage neuron model, or equivalently, a generalized contact process in <jats:inline-formula> <jats:tex-math></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:msup> <mml:mrow> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jstatac4985ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>. The model is described by a coupled set of nonlinear integral-differential equations. It was inspired by a model of neurons with discrete voltages evolving by a stochastic integrate and fire mechanism. We obtain a complete solution in the spatially uniform case and partial solutions in the general case. The system has one or more fixed points and also traveling wave solutions.</jats:p>

dc.identifier.issn

1742-5468

dc.identifier.uri

https://hdl.handle.net/10161/26377

dc.publisher

IOP Publishing

dc.relation.ispartof

Journal of Statistical Mechanics: Theory and Experiment

dc.relation.isversionof

10.1088/1742-5468/ac4985

dc.title

Time evolution of a mean-field generalized contact process

dc.type

Journal article

pubs.begin-page

023502

pubs.end-page

023502

pubs.issue

2

pubs.organisational-group

Duke

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Mathematics

pubs.publication-status

Published

pubs.volume

2022

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chariker_2022_J._Stat._Mech._2022_023502.pdf
Size:
938.08 KB
Format:
Adobe Portable Document Format
Description:
Published version