Massive clonal expansion of medulloblastoma-specific T cells during adoptive cellular therapy.
Date
2019-11-27
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Attention Stats
Abstract
In both human and murine systems, we have developed an adoptive cellular therapy platform against medulloblastoma and glioblastoma that uses dendritic cells pulsed with a tumor RNA transcriptome to expand polyclonal tumor-reactive T cells against a plurality of antigens within heterogeneous brain tumors. We demonstrate that peripheral TCR Vβ repertoire analysis after adoptive cellular therapy reveals that effective response to adoptive cellular therapy is concordant with massive in vivo expansion and persistence of tumor-specific T cell clones within the peripheral blood. In preclinical models of medulloblastoma and glioblastoma, and in a patient with relapsed medulloblastoma receiving adoptive cellular therapy, an early and massive expansion of tumor-reactive lymphocytes, coupled with prolonged persistence in the peripheral blood, is observed during effective therapeutic response to immunotherapy treatment.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Flores, C, T Wildes, B DiVita Dean, G Moore, J Drake, R Abraham, J Gil, O Yegorov, et al. (2019). Massive clonal expansion of medulloblastoma-specific T cells during adoptive cellular therapy. Science advances, 5(11). p. eaav9879. 10.1126/sciadv.aav9879 Retrieved from https://hdl.handle.net/10161/24571.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Tyler Wildes

Gerald Arthur Grant

Timothy Alan Driscoll
Dr. Driscoll participates in multi-institutional studies for the treatment of high risk neuroblastoma patients using high dose chemotherapy with stem cell transplant and the development of new therapies for high risk neuroblastoma patients.

Roger Edwin McLendon
Brain tumors are diagnosed in more than 20,000 Americans annually. The most malignant neoplasm, glioblastoma, is also the most common. Similarly, brain tumors constitute the most common solid neoplasm in children and include astrocytomas of the cerebellum, brain stem and cerebrum as well as medulloblastomas of the cerebellum. My colleagues and I have endeavored to translate the bench discoveries of genetic mutations and aberrant protein expressions found in brain tumors to better understand the processes involved in the etiology, pathogenesis, and treatment of brain tumors. Using the resources of the Preston Robert Brain Tumor Biorepository at Duke, our team, consisting of Henry Friedman, Allan Friedman, and Hai Yan and lead by Darell Bigner, have helped to identify mutations in Isocitrate Dehydrogenase (IDH1 and IDH2) as a marker of good prognosis in gliomas of adults. This test is now offered at Duke as a clinical test. Working with the Molecular Pathology Laboratory at Duke, we have also brought testing for TERT promoter region mutations as another major test for classifying gliomas in adults. Our collaboration with the Toronto Sick Kids Hospital has resulted in prognostic testing for childhood medulloblastomas, primitive neuroectodermal tumors, and ependymomas at Duke.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.