The effects of depression and use of antidepressive medicines during pregnancy on the methylation status of the IGF2 imprinted control regions in the offspring.
Date
2011-10-26
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
In utero exposures to environmental factors may result in persistent epigenetic modifications affecting normal development and susceptibility to chronic diseases in later life. We explored the relationship between exposure of the growing fetus to maternal depression or antidepressants and DNA methylation at two differentially methylated regions (DMRs) of the imprinted Insulin-like Growth Factor 2 (IGF2) gene. Aberrant DNA methylation at the IGF2 and neighboring H19 DMRs has been associated with deregulated IGF2 expression, childhood cancers and several chronic diseases during adulthood. Our study population is comprised of pregnant mothers and their newborns (n = 436), as part of the Newborn Epigenetics Study (NEST). A standardized questionnaire was completed and medical record data were abstracted to ascertain maternal depression and antidepressive drug use. DMR methylation levels in umbilical cord blood leukocytes were quantified using pyrosequencing. From the 436 newborns, laboratory data were obtained for 356 individuals at the IGF2 DMRs, and for 411 individuals at the H19 DMRs; about half of each group was African American or Caucasian. While overall no association between depression and methylation profiles was found, we observed a significant hypermethylation of the H19 DMRs in newborns of African American (n = 177) but not Caucasian (n = 168) mothers who reported the use of antidepressive drugs during pregnancy (β = +6.89, p = 0.01). Of note, our data reveal a race-independent association between smoking during pregnancy and methylation at the IGF2 DMR (+3.05%, p = 0.01). In conclusion, our findings suggest a race-dependent response related to maternal use of antidepressants at one of the IGF2 DMRs in the offspring.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Soubry, A, Sk Murphy, Z Huang, A Murtha, Jm Schildkraut, Rl Jirtle, F Wang, J Kurtzberg, et al. (2011). The effects of depression and use of antidepressive medicines during pregnancy on the methylation status of the IGF2 imprinted control regions in the offspring. Clinical epigenetics, 3(2). p. 2. 10.1186/1868-7083-3-2 Retrieved from https://hdl.handle.net/10161/24679.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Susan Kay Murphy
Dr. Murphy is a tenured Associate Professor in the Department of Obstetrics and Gynecology and serves as Chief of the Division of Reproductive Sciences. As a molecular biologist with training in human epigenetics, her research interests are largely centered around the role of epigenetic modifications in health and disease.
Dr. Murphy has ongoing projects on gynecologic malignancies, including approaches to eradicate ovarian cancer cells that survive chemotherapy and later give rise to recurrent disease. Dr. Murphy is actively involved in many collaborative projects relating to the Developmental Origins of Health and Disease (DOHaD).
Her lab is currently working on preconception environmental exposures in males, particularly on the impact of cannabis on the sperm epigenome and the potential heritability of these effects. They are also studying the epigenetic and health effects of in utero exposures, with primary focus on children from the Newborn Epigenetics STudy (NEST), a pregnancy cohort she co-founded who were recruited from central North Carolina between 2005 and 2011. Dr. Murphy and her colleagues continue to follow NEST children to determine relationships between prenatal exposures and later health outcomes.
Zhiqing Huang
Dr. Huang is an Assistant Professor in the Department of Obstetrics and Gynecology, Division of Reproductive Sciences, at Duke University Medical Center. She obtained her MD at North China Coal Medical University in China and her PhD at the University of Heidelberg in Germany under the mentorship of Dr. Ralph Witzgall. She did her postdoctoral training with Dr. Jiemin Wong at Baylor College of Medicine, studying how histone methylation and chromatin modifications regulate androgen receptor transcription.
Dr. Huang’s research includes the following:
•The factors in the tumor microenvironment contribute to ovarian cancer progress;
•New drug development for recurrent ovarian cancer treatment;
•The early DNA methylation profiles contribute to cancer development in late life;
•The special changes in the tumor microenvironment;
•Epigenetics and epigenomics.
*The impact of lipid metabolism in the tumor microenvironment in cancer progression and treatment.
*Impact of ferroptosis in endometriosis development.
Dr. Huang has received an R03 funding titled “Role of Age-Related Changes in the Tumor Microenvironment on Ovarian Cancer Progression” from NIA at NIH for 2021-2023.
Dr. Huang received Charles B. Hammond's Research Fund from the Department of Obstetrics and Gynecology at Duke University in November 2022, for a project titled "Single Cell Spatial Transcriptomics in Highly Aggressive and Less Aggressive Ovarian Cancer".
Dr. Huang has received Duke Cancer Institute 2023 spring pilot study award for07012023-06302024, the project title is "Age Effects on Chemotherapy Targeting Cells Causing Ovarian Cancer Recurrence”.
Dr. Huang has received the American Cancer Society -Duke Cancer Institute (ASC-DCI) 2024 spring pilot study award for 07012024-06302025. The project title is "Early Establishment of Epigenetic Profiles that Increase Cancer Risk in Late Life”.
Dr. Huang received Charles B. Hammond's Research Fund from the Department of Obstetrics and Gynecology at Duke University in November 2023 for 01012024-12312024. The project's title is "Age Effects on Chemotherapy Targeting Cells Causing Ovarian Cancer Recurrence".
Joellen Martha Schildkraut
Dr. Schildkraut is an epidemiologist whose research includes the molecular epidemiology of ovarian, breast and brain cancers. Dr. Schildkraut's research interests include the study of the interaction between genetic and environmental factors. She is currently involved in a large study of genome wide association and ovarian cancer risk and survival. Some of her work is also focused on particular genetic pathways including the DNA repair and apoptosis pathways. She currently leads a study of African American women diagnosed with ovarian cancer. She is also collaborating in a large a case-control study of meningioma risk factors and with which a genome wide association analysis is about to commence.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.