An Investigation of Sensitivity to Initial Conditions in an Experimental Structural System
Date
2013
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
This thesis characterizes the nonlinear behavior of an experimental system that exhibits snap-through buckling behavior. A single-degree-of-freedom snap-through link model is harmonically forced using a Scotch yoke mechanism. In order to establish the sensitivity to initial conditions, experimental basins of attraction are constructed using the stochastic interrogation method. After, frequency sweeps are performed on the system to identify regions of interesting behavior. Then, time series data is collected at specific frequencies of interest to highlight the broad phenomenological behavior of the structural system.
A useful tool when modeling structural systems is numerical analysis. An equation of motion is developed to numerically simulate all experimentally observed results. The numerical results include snap-through boundaries, bifurcation diagrams, full initial condition grid basins of attraction, time-lag embedded basins of attraction, frequency sweeps, and time series of regions of pathological behavior.
Type
Department
Description
Provenance
Citation
Permalink
Citation
Waite, Joshua Joseph (2013). An Investigation of Sensitivity to Initial Conditions in an Experimental Structural System. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/7285.
Collections
Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.