Reconstructing Cenozoic Patagonian biotas using multi-proxy fossil records
dc.contributor.author | Palazzesi, L | |
dc.contributor.author | Vizcaíno, SF | |
dc.contributor.author | Barreda, VD | |
dc.contributor.author | Cuitiño, JI | |
dc.contributor.author | del Río, CJ | |
dc.contributor.author | Goin, F | |
dc.contributor.author | González Estebenet, MS | |
dc.contributor.author | Guler, MV | |
dc.contributor.author | Gandolfo, MA | |
dc.contributor.author | Kay, R | |
dc.contributor.author | Parras, A | |
dc.contributor.author | Reguero, MA | |
dc.contributor.author | Zamaloa, MDC | |
dc.date.accessioned | 2023-01-22T13:23:00Z | |
dc.date.available | 2023-01-22T13:23:00Z | |
dc.date.issued | 2021-12-01 | |
dc.date.updated | 2023-01-22T13:22:55Z | |
dc.description.abstract | The fossil record from Cenozoic sediments provides a great deal of information that has direct bearing on the early assembling of modern Patagonian ecosystems. In this synthesis, we revise selected fossil marine and terrestrial records from the last 66 Ma with the aim of understanding major shifts of Patagonian biotas. From the Paleocene to the mid Eocene this region supported outstandingly diverse terrestrial assemblages that show strong connections to modern-day Australasia (e.g. gum trees, casuarinas, monotremes). Nearshore marine biotas confirm peak warmth conditions, with tropical species with Tethyan affinities. The late Eocene and early Oligocene marks the onset of a period of overall regional cooling, drying, and increasingly variable ecological conditions. The rise of palm-dominated flammable biomes in hinterlands and the prevalence of Gondwanan gallery forest (e.g. southern beeches and podocarps) along river-sides supported the existence of mosaic habitats maintained by edaphic and regional climatic conditions. This shift in landscapes reflects the evolution of a wide range of herbivorous mammals (e.g. Notoungulata, Litopterna, and Astrapotheria). The late Oligocene and early-to-mid Miocene witnessed a dramatic modification of landscapes including the incursion of high sea-level episodes, the emergence of specialized coastal (i.e. salt-marsh) plant taxa and the expansion of large herbivorous mammals with predominantly high-crowned teeth (e.g. Notoungulata: Hegetotheriidae, Interatheriidae, and Mesotheriidae). The cooling trend of this interval was interrupted by a mid-Miocene transient warming event, with the dispersion of terrestrial (e.g. platyrrhine monkeys, palms) and marine (e.g. Tuberculodinium vancampoae) elements with tropical affinity into southernmost South American regions. Seasonally-dry conditions increased towards the end of the Miocene, yet subtropical species persisted either in terrestrial (e.g. malpighs, passion vines, capybaras), and marine (e.g. Subtropical and Caribbean molluscs) environments. The increasing aridity caused by the Andean uplift wiped out most of the forest species and promoted the diversification of open-habitat species; the emergence of the current grass-dominated Patagonian Steppe occurred later on, probably during the Quaternary. | |
dc.identifier.issn | 0895-9811 | |
dc.identifier.uri | ||
dc.language | en | |
dc.publisher | Elsevier BV | |
dc.relation.ispartof | Journal of South American Earth Sciences | |
dc.relation.isversionof | 10.1016/j.jsames.2021.103513 | |
dc.title | Reconstructing Cenozoic Patagonian biotas using multi-proxy fossil records | |
dc.type | Journal article | |
duke.contributor.orcid | Kay, R|0000-0002-4219-7580 | |
pubs.begin-page | 103513 | |
pubs.end-page | 103513 | |
pubs.organisational-group | Duke | |
pubs.organisational-group | Nicholas School of the Environment | |
pubs.organisational-group | Trinity College of Arts & Sciences | |
pubs.organisational-group | Evolutionary Anthropology | |
pubs.organisational-group | Earth and Climate Sciences | |
pubs.publication-status | Published | |
pubs.volume | 112 |
Files
Original bundle
- Name:
- Palazzesi_et_al_2021.pdf
- Size:
- 2.91 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version