The Effects of Organic Matter Amendments on Greenhouse Gas Emissions from a Mitigation Wetland in Virginia’s Coastal Plain

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


© 2015, Society of Wetland Scientists. There is concern that widespread restoration and/or creation of freshwater wetlands may present a radiative forcing hazard because of the potential for methane (CH 4 ) emissions. Yet data on greenhouse gas (GHG) emissions from restored wetlands are sparse and there has been little investigation into the GHG effects of amending wetland soils with organic matter (OM), a practice used to improve function of mitigation wetlands in the Eastern United States. In this study we measure GHG emissions across an OM gradient at the Charles City Wetland (CCW) in Charles City County, Virginia. We found soils heavily loaded with OM emit significantly more CO 2 than those that have received little or no OM. CH 4 emissions from CCW are low compared to reference wetlands and show no relationship with the loading rate of added OM or total soil carbon. We conclude that adding moderate amounts ( < ~150 kg m −2 ) of OM to the CCW does not greatly increase GHG emissions, while the addition of high amounts of OM produces additional CO 2 , but not CH 4 . CH 4 flux is highest under flooded conditions during warmer months but it still a modest contribution to global warming potential compared to soil CO 2 flux.






Published Version (Please cite this version)


Publication Info

Winton, RS, and CJ Richardson (2015). The Effects of Organic Matter Amendments on Greenhouse Gas Emissions from a Mitigation Wetland in Virginia’s Coastal Plain. Wetlands, 35(5). pp. 969–979. 10.1007/s13157-015-0674-y Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Curtis J. Richardson

Research Professor of Resource Ecology in the Division of Environmental Science and Policy

Curtis J. Richardson is Professor of Resource Ecology and founding Director of the Duke University Wetland Center in the Nicholas School of the Environment. Dr. Richardson earned his degrees from the State University of New York and the University of Tennessee.

His research interests in applied ecology focus on long-term ecosystem response to large-scale perturbations such as climate change, toxic materials, trace metals, flooding, or nutrient additions. He has specific interests in phosphorus nutrient dynamics in wetlands and the effects of environmental stress on plant communities and ecosystem functions and services. The objectives of his research are to utilize ecological principles to develop new approaches to environmental problem solving. The goal of his research is to provide predictive models and approaches to aid in the management of ecosystems.

Recent research activities: 1) wetland restoration of plant communities and its effects on regional water quality and nutrient biogeochemical cycles, 2) the development of ecosystem metrics as indices of wetland restoration success, 3) the effects of nanomaterial on wetland and stream ecosystem processes, 4) the development of ecological thresholds along environmental gradients, 5) wetland development trends and restoration in coastal southeastern United States, 6) the development of an outdoor wetland and stream research and teaching laboratory on Duke Forest, 7) differential nutrient limitation (DNL) as a mechanism to overcome N or P limitations across trophic levels in wetland ecosystems, and 8) carbon sequestration in coastal North Carolina pocosins.

Richardson oversees the main analytical lab in NSOE, which is open to students and faculty. Dr. Richardson has been listed in Who's Who in Science™ annually since 1989 and was elected President of the Society of Wetland Scientists in 1987-88. He has served on many editorial review committees for peer-reviewed scientific journals, and he is a past Chair of the Nicholas School Division of Environmental Sciences and Policy. Dr. Richardson is a Fellow of the American Association for the Advancement of Science, the Society of Wetland Scientists, and the Soil Science Society of America.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.