Assessing the nonlinear association of environmental factors with antibiotic resistance genes (ARGs) in the Yangtze River Mouth, China.
Date
2023-11
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
The emergence of antibacterial resistance (ABR) is an urgent and complex public health challenge worldwide. Antibiotic resistant genes (ARGs) are considered as a new pollutant by the WHO because of their wide distribution and emerging prevalence. The role of environmental factors in developing ARGs in bacterial populations is still poorly understood. Therefore, the relationship between environmental factors and bacteria should be explored to combat ABR and propose more tailored solutions in a specific region. Here, we collected and analyzed surface water samples from Yangtze Delta, China during 2021, and assessed the nonlinear association of environmental factors with ARGs through a sigmoid model. A high abundance of ARGs was detected. Amoxicillin, phosphorus (P), chromium (Cr), manganese (Mn), calcium (Ca), and strontium (Sr) were found to be strongly associated with ARGs and identified as potential key contributors to ARG detection. Our findings suggest that the suppression of ARGs may be achieved by decreasing the concentration of phosphorus in surface water. Additionally, Group 2A light metals (e.g., magnesium and calcium) may be candidates for the development of eco-friendly reagents for controlling antibiotic resistance in the future.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Miao, Jiazheng, Yikai Ling, Xiaoyuan Chen, Siyuan Wu, Xinyue Liu, Shixin Xu, Sajid Umar, Benjamin D Anderson, et al. (2023). Assessing the nonlinear association of environmental factors with antibiotic resistance genes (ARGs) in the Yangtze River Mouth, China. Scientific reports, 13(1). p. 20367. 10.1038/s41598-023-45973-9 Retrieved from https://hdl.handle.net/10161/29459.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Shixin Xu
Shixin Xu is an Assistant Professor of Mathematics whose research spans several dynamic and interconnected fields. His primary interests include machine learning and data-driven models for disease prediction, multiscale modeling of complex fluids, neurovascular coupling, homogenization theory, and numerical analysis. His current projects reflect a diverse and impactful portfolio:
- Developing predictive models based on image data to identify hemorrhagic transformation in acute ischemic stroke.
- Conducting electrodynamics modeling of saltatory conduction along myelinated axons to understand nerve impulse transmission.
- Engaging in electrochemical modeling to explore the interactions between electric fields and chemical processes.
- Investigating fluid-structure interactions with mass transport and reactions, crucial for understanding physiological and engineering systems.
These projects demonstrate his commitment to addressing complex problems through interdisciplinary approaches that bridge mathematics with biological and physical sciences.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.