Scientific Abstracts and Sessions
Date
2020-06
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Purpose Image quality estimation in CT is crucial for technology assessment, procedure optimization, and overall radiological benefit evaluation, with noise magnitude playing a key role. Over the years, several methods have been proposed to estimate noise surrogates in vivo. The most accurate approach is to assess ensemble noise by scanning a patient multiple times and sampling each pixel noise within the ensemble of images, an ethically undoable repeated imaging process. Such impasse can be surmounted using Virtual Imaging Trials (VITs) that use computer-based simulations to simulate clinically realistic scenarios. The purpose of this study was to compare two different noise magnitude estimation methods with the ensemble noise measured in a VIT population. Methods This study included a set of 47 XCAT-phantom repeated chest exams acquired virtually using a scanner-specific simulator (DukeSim) modeling a commercial scanner geometry, reconstructed with FBP and IR algorithms. Noise magnitudes were calculated in soft tissues (GNI) and air surrounding the patient (AIRn), applying [-300,100]HU and HU<-900 thresholds, respectively. Furthermore, for each pixel in GNI threshold, the ensemble noise magnitudes in soft tissues (En) were calculated across images. Noise magnitude from different methods were compared in terms of percentage difference with correspondent En median values. Results For FBP reconstructed images, median En was 30.6 HU; median GNI was 40.1 HU (+31%) and median AIRn was 25.1 HU (-18%). For IR images, median En was 19.5 HU; median GNI was 25.1 HU (+29%) and median AIRn was 18.8 HU (-4%). Conclusion Compared to ensemble noise, GNI overestimates the tissue noise by about 30%, while AIRn underestimates it by 4 to 18%, depending on the reconstruction used. These differences may be applied as adjustment or calibration factors to the related noise estimation methods to most closely represent clinical results. However, air noise cannot be assumed to represent tissue noise.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Collections
Scholars@Duke
Francesco Ria
Dr. Francesco Ria is a medical physicist and he serves as an Assistant Professor in the Department of Radiology. Francesco has an extensive expertise in the assessment of procedure performances in radiology. In particular, his research activities focus on the simultaneous evaluation of radiation dose and image quality in vivo in computed tomography providing a comprehensive evaluation of radiological exams. Moreover, Francesco is developing and investigating novel mathematical models that, uniquely in the radiology field, can incorporate a comprehensive and quantitative risk-to-benefit assessment of the procedures; he is continuing to apply his expertise towards the definition of new patient specific risk metrics, and in the assessment of image quality in vivo also using state-of-the-art imaging technology, such as photon counting computed tomography scanners, and machine learning reconstruction algorithms.
Dr. Ria is a member of the American Association of Physicists in Medicine task group 392 (Investigation and Quality Control of Automatic Exposure Control System in CT), of the American Association of Physicists in Medicine Public Education working group (WGATE), and of the Italian Association of Medical Physics task group Dose Monitoring in Diagnostic Imaging.
Material is made available in this collection at the direction of authors according to their understanding of their rights in that material. You may download and use these materials in any manner not prohibited by copyright or other applicable law.