Effect of lithotripter focal width on stone comminution in shock wave lithotripsy.

Loading...
Thumbnail Image

Date

2010-04

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

307
views
673
downloads

Citation Stats

Abstract

Using a reflector insert, the original HM-3 lithotripter field at 20 kV was altered significantly with the peak positive pressure (p(+)) in the focal plane increased from 49 to 87 MPa while the -6 dB focal width decreased concomitantly from 11 to 4 mm. Using the original reflector, p(+) of 33 MPa with a -6 dB focal width of 18 mm were measured in a pre-focal plane 15-mm proximal to the lithotripter focus. However, the acoustic pulse energy delivered to a 28-mm diameter area around the lithotripter axis was comparable ( approximately 120 mJ). For all three exposure conditions, similar stone comminution ( approximately 70%) was produced in a mesh holder of 15 mm after 250 shocks. In contrast, stone comminution produced by the modified reflector either in a 15-mm finger cot (45%) or in a 30-mm membrane holder (14%) was significantly reduced from the corresponding values (56% and 26%) produced by the original reflector (no statistically significant differences were observed between the focal and pre-focal planes). These observations suggest that a low-pressure/broad focal width lithotripter field will produce better stone comminution than its counterpart with high-pressure/narrow focal width under clinically relevant in vitro comminution conditions.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1121/1.3308409

Publication Info

Qin, Jun, W Neal Simmons, Georgy Sankin and Pei Zhong (2010). Effect of lithotripter focal width on stone comminution in shock wave lithotripsy. J Acoust Soc Am, 127(4). pp. 2635–2645. 10.1121/1.3308409 Retrieved from https://hdl.handle.net/10161/4244.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Simmons

Walter Neal Simmons

Gendell Family Professor of the Practice
Zhong

Pei Zhong

Professor in the Thomas Lord Department of Mechanical Engineering and Materials Science

My research focuses on engineering and technology development with applications in the non-invasive or minimally invasive treatment of kidney stone disease via shock wave and laser lithotripsy, high-intensity focused ultrasound (HIFU) and immunotherapy for cancer treatment, acoustic and optical cavitation, and ultrasound neuromodulation via sonogenetics. 

We are taking an integrated and translational approach that combines fundamental research with engineering and applied technology development to devise novel and enabling ultrasonic, optical, and mechanical tools for a variety of clinical applications. We are interested in shock wave/laser-fluid-bubble-solid interaction, and resultant mechanical and thermal fields that lead to material damage and removal.  We also investigate the stress response of biological cell and tissue induced by cavitation and ultrasound exposure, mediated through mechanosensitive ion channels, such as Piezo 1. Our research activities are primarily supported by NIH and through collaborations with the medical device industry.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.