Correction of glycogen storage disease type III with rapamycin in a canine model

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


Recently, we reported that progression of liver fibrosis and skeletal myopathy caused by extensive accumulation of cytoplasmic glycogen at advanced age is the major feature of a canine model of glycogen storage disease (GSD) IIIa. Here, we aim to investigate whether rapamycin, a specific inhibitor of mTOR, is an effective therapy for GSD III. Our data show that rapamycin significantly reduced glycogen content in primary muscle cells from human patients with GSD IIIa by suppressing the expression of glycogen synthase and glucose transporter 1. To test the treatment efficacy in vivo, rapamycin was daily administered to GSD IIIa dogs starting from age 2 (early-treatment group) or 8 months (late-treatment group), and liver and skeletal muscle biopsies were performed at age 12 and 16 months. In both treatment groups, muscle glycogen accumulation was not affected at age 12 months but significantly inhibited at 16 months. Liver glycogen content was reduced in the early-treatment group but not in the late-treatment group at age 12 months. Both treatments effectively reduced liver fibrosis at age 16 months, consistent with markedly inhibited transition of hepatic stellate cells into myofibroblasts, the central event in the process of liver fibrosis. Our results suggest a potential useful therapy for GSD III. Key messages: Rapamycin inhibited glycogen accumulation in GSD IIIa patient muscle cells. Rapamycin reduced muscle glycogen content in GSD IIIa dogs at advanced age. Rapamycin effectively prevented progression of liver fibrosis in GSD IIIa dogs. Our results suggest rapamycin as potential useful therapy for patients with GSD III. © 2014 Springer-Verlag Berlin Heidelberg.






Published Version (Please cite this version)


Publication Info

Yi, Haiqing, Elizabeth D Brooks, Beth L Thurberg, John C Fyfe, Priya S Kishnani and Baodong Sun (2014). Correction of glycogen storage disease type III with rapamycin in a canine model. Journal of Molecular Medicine, 92(6). pp. 641–650. 10.1007/s00109-014-1127-4 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Priya Sunil Kishnani

Chen Family Distinguished Professor of Pediatrics


A multidisciplinary approach to care of individuals with genetic disorders in conjunction with clinical and bench research that contributes to:
1) An understanding of the natural history and delineation of long term complications of genetic disorders  with a special focus on liver Glycogen storage disorders, lysosomal disorders with a special focus on Pompe disease, Down syndrome and hypophosphatasia
2) ) The development of new therapies such as AAV gene therapy, enzyme therapy, small molecule and other approaches for genetic disorders through translational research

3) The development and execution of large multicenter trials to confirm safety and efficacy of potential therapies
4) Role of antibodies/immune response in patients on therapeutic proteins and AAV gene therapy

. Glycogen Storage Disease (GSD): We are actively following subjects with all types of Glycogen Storage Disease, with particular emphasis on types I, II, III, IV, VI and IX. The goal of the treatment team is to better determine the clinical phenotype and long term complications of these diseases. Attention to disease manifestations observed in adulthood, such as adenomas and risk for HCC, is of paramount importance in monitoring and treating these chronic illnesses. We are establishing clinical algorithms for managing adenomas, and the overall management of these patients including cardiac, bone, muscle and liver issues. A special focus is biomarker discovery, an Omics approach including metabolomics and immune phenotyping. We are working on AAV gene therapy for several hepatic GSDs

.Lysosomal Storage Disease: The Duke Lysosomal Storage Disease (LSD) treatment center follows and treats patients with Pompe, Gaucher, Fabry, Mucopolysaccharidosis, Niemann Pick, LAL-D and other LSD's. The Duke Metabolism Clinical Research Team is exploring many aspects of enzyme replacement therapy (ERT), including impact on different systems, differential response, and long term effects. Other symptomatic and treatment interventions for this category of diseases are also being explored in the context of clinical care.

. Pompe Disease: The care team has extensive experience in the care of infants and adults with Pompe disease and was instrumental in conducting clinical trials and the bench to bedside work that led to the 2006 FDA approval of alglucosidase alfa, the first treatment for this devastating disease. We are currently focusing on role of antibodies/immune response on patient outcome and role of immune modulation/immune suppression as an adjunct to ERT. Our team is also working on AAV gene therapy for Pompe disease. A focus is on newborn screening (NBS) and understanding the clinical phenotype and management approaches for babies identified via NBS

.  Hypophosphatasia: We follow a large cohort of patients with HPP. The goal is to understand the features of the disease beyond bone disease, development of biomarkers, role of ERT and immune responses in HPP

. Neuromuscular disorders: We are collaborating with neurologists, cardiologists and neuromuscular physicians to serve as a treatment site for clinical trials in these diseases. We are currently involved in trials of DMD and are working closely on setting up collaborations for studies in SMA.


Baodong Sun

Associate Professor in Pediatrics

My overall research interests are finding effective treatment for human glycogen storage diseases (GSDs) and other inherited metabolic disorders. My current research focuses on identification of novel therapeutic targets and development of effective therapies for GSD II (Pompe disease), GSD III (Cori disease), and GSD IV (Andersen disease) using cellular and animal disease models. The main therapeutic approaches we are using in our pre-clinical studies include protein/enzyme therapy, AAV-mediated gene therapy, and substrate reduction therapy with small molecule drugs.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.