Improving Models of Forest Carbon and Water Cycling: Revisiting Assumptions and Incorporating Variability

Loading...
Thumbnail Image

Date

2012

Advisors

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

346
views
237
downloads

Abstract

This dissertation examines issues concerning sap flux scaled estimates of the canopy-averaged transpiration rate of trees per unit leaf area (EL) and stomatal conductance (GS), as well as their implications in the water and carbon balance of individuals and stands, with the final goal of an integrated assessment of 11 years of such data from two species (Pinus taeda and Liquidambar styraciflua) at the Duke Free Air Carbon dioxide Enrichment (Duke FACE) facility. These issues include (1) the effects of allometric relationships and xylem characteristics on the gas phase transport of water from leaves and the hydraulic supply of it, (2) consideration of the hydraulic capacitance in the inference of stomatal behavior from sap flux data and (3) the dynamic modeling of stomatal conductance to environmental drivers using Bayesian techniques. It is shown that a) for resolution of sap flux in conifers at the scale of minutes under dynamic conditions, time constants for both stomatal responses and hydraulic capacitance of sapwood must be considered, (b) nighttime conductance can lead to large errors in rates of sap flux measured under some conditions, (c) variation in allometry between P. taeda individuals can lead to different rates of transpiration and carbon assimilation per unit leaf area and that (d) hydraulic time constants for the stems of mature P. taeda at Duke FACE trees varied by the stem length considered and were on the order of 30-45 minutes for a 10-m segment. An analysis incorporating all these elements leads to the conclusions that (e) both elevated CO2 (eCO2) and fertilization (FR) resulted in proportionally larger reductions in the EL and GS of P. taeda as soil moisture decreased with (f) eCO2 having little to no effect in months of high soil moisture and (g) FR leading to ~14% reduction of GS under high soil moisture in absence of eCO2, while (h) both eCO2 and FR led to reduced EL and GS of L. styraciflua across soil moisture conditions.

Department

Description

Provenance

Citation

Citation

Ward, Eric Jason (2012). Improving Models of Forest Carbon and Water Cycling: Revisiting Assumptions and Incorporating Variability. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/5398.

Collections


Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.