Biomaterials-Mediated Regulation of Macrophage Cell Fate.
Date
2020-01
Authors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Endogenous regeneration aims to rebuild and reinstate tissue function through enlisting natural self-repairing processes. Promoting endogenous regeneration by reducing tissue-damaging inflammatory responses while reinforcing self-resolving inflammatory processes is gaining popularity. In this approach, the immune system is recruited as the principal player to deposit a pro-reparative matrix and secrete pro-regenerative cytokines and growth factors. The natural wound healing cascade involves many immune system players (neutrophils, macrophages, T cells, B cells, etc.) that are likely to play important and indispensable roles in endogenous regeneration. These cells support both the innate and adaptive arms of the immune system and collectively orchestrate host responses to tissue damage. As the early responders during the innate immune response, macrophages have been studied for decades in the context of inflammatory and foreign body responses and were often considered a cell type to be avoided. The view on macrophages has evolved and it is now understood that macrophages should be directly engaged, and their phenotype modulated, to guide the timely transition of the immune response and reparative environment. One way to achieve this is to design immunomodulating biomaterials that can be placed where endogenous regeneration is desired and actively direct macrophage polarization. Upon encountering these biomaterials, macrophages are trained to perform more pro-regenerative roles and generate the appropriate environment for later stages of regeneration since they bridge the innate immune response and the adaptive immune response. This new design paradigm necessitates the understanding of how material design elicits differential macrophage phenotype activation. This review is focused on the macrophage-material interaction and how to engineer biomaterials to steer macrophage phenotypes for better tissue regeneration.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Liu, Yining, and Tatiana Segura (2020). Biomaterials-Mediated Regulation of Macrophage Cell Fate. Frontiers in bioengineering and biotechnology, 8. p. 609297. 10.3389/fbioe.2020.609297 Retrieved from https://hdl.handle.net/10161/22633.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Tatiana Segura
Tatiana Segura is a Professor of Biomedical Engineering, Neurology, and Dermatology at Duke University. She received her B.S. degree in Bioengineering from the University of California, Berkeley (UC Berkeley) and her doctorate in Chemical Engineering from Northwestern University. She began her career in Biomaterials research during her doctoral work working with Prof. Lonnie Shea. She designed hydrogels for local non-viral gene delivery, a topic that she still works on today. She continued her Biomaterials training during her postdoctoral work with Jeffrey Hubbell. There she worked on the design of hydrogels and self-assembled polysulfides for gene delivery. She began her independent career at the University of California, Los Angeles (UCLA) in the Department of Chemical and Biomolecular Engineering reaching the title of Professor. At UCLA she participated actively in service culminating with her election as department Vice Chair and running the Graduate Program. At Duke she has continued to be heavily involved in service at the department, school, and university level. In only 5 years, she has Chaired 6 committees, and participated in at least 6 more, is the direct mentor to two young assistant professors, is the Co-director of the Center for Biotechnology and Tissue Engineering and serves as MPI of the T32 Biotechnology Training grant. Notably she is currently the Chair of the BME department Diversity Equity and Inclusion Committee.
Prof. Segura’s research is centered on biomaterials and in engineering biomaterial-soft tissue interactions to promote repair and regeneration. Together with her lab members, she designs new biomaterial interventions that can promote brain plasticity after stroke, promote scarless healing in skin wounds, induce tolerance of transplanted skin, and promote constructive immune responses after biomaterial implantation. Currently, her lab has 12 graduate students, 4 postdoctoral scholars, 2 master students, 1 plastic surgery resident, 16 undergraduate students, one high school student, and one research associate.
Professor Segura has received numerous awards and distinctions during her career, including being named a Senior Member of the National Academy of Inventors, receiving the Acta Biomaterialia Silver Medal, a CAREER Award from the National Science Foundation, a Outstanding Young Investigator Award from the American Society of Gene and Cell Therapy, and a National Scientist Development Grant from the American Heart Association. She was also named a Fellow of the American Institute for Medical and Biological Engineers (AIMBE). Professor Segura has published over 100 peer-reviewed papers and reviews and has over 10,000 citations. Her laboratory has been continuously funded since 2008 with several grants from the National Institutes of Health (NIH).
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.