Biomaterials-Mediated Regulation of Macrophage Cell Fate.

dc.contributor.author

Liu, Yining

dc.contributor.author

Segura, Tatiana

dc.date.accessioned

2021-04-28T04:34:05Z

dc.date.available

2021-04-28T04:34:05Z

dc.date.issued

2020-01

dc.date.updated

2021-04-28T04:34:00Z

dc.description.abstract

Endogenous regeneration aims to rebuild and reinstate tissue function through enlisting natural self-repairing processes. Promoting endogenous regeneration by reducing tissue-damaging inflammatory responses while reinforcing self-resolving inflammatory processes is gaining popularity. In this approach, the immune system is recruited as the principal player to deposit a pro-reparative matrix and secrete pro-regenerative cytokines and growth factors. The natural wound healing cascade involves many immune system players (neutrophils, macrophages, T cells, B cells, etc.) that are likely to play important and indispensable roles in endogenous regeneration. These cells support both the innate and adaptive arms of the immune system and collectively orchestrate host responses to tissue damage. As the early responders during the innate immune response, macrophages have been studied for decades in the context of inflammatory and foreign body responses and were often considered a cell type to be avoided. The view on macrophages has evolved and it is now understood that macrophages should be directly engaged, and their phenotype modulated, to guide the timely transition of the immune response and reparative environment. One way to achieve this is to design immunomodulating biomaterials that can be placed where endogenous regeneration is desired and actively direct macrophage polarization. Upon encountering these biomaterials, macrophages are trained to perform more pro-regenerative roles and generate the appropriate environment for later stages of regeneration since they bridge the innate immune response and the adaptive immune response. This new design paradigm necessitates the understanding of how material design elicits differential macrophage phenotype activation. This review is focused on the macrophage-material interaction and how to engineer biomaterials to steer macrophage phenotypes for better tissue regeneration.

dc.identifier.issn

2296-4185

dc.identifier.issn

2296-4185

dc.identifier.uri

https://hdl.handle.net/10161/22633

dc.language

eng

dc.publisher

Frontiers Media SA

dc.relation.ispartof

Frontiers in bioengineering and biotechnology

dc.relation.isversionof

10.3389/fbioe.2020.609297

dc.subject

biomaterial

dc.subject

immunomodulation

dc.subject

macrophage

dc.subject

macrophage polarization

dc.subject

mechanotransduction

dc.subject

phenotype

dc.subject

regeneration

dc.subject

wound healing

dc.title

Biomaterials-Mediated Regulation of Macrophage Cell Fate.

dc.type

Journal article

duke.contributor.orcid

Segura, Tatiana|0000-0003-1569-8686

pubs.begin-page

609297

pubs.organisational-group

Pratt School of Engineering

pubs.organisational-group

Biomedical Engineering

pubs.organisational-group

Neurology

pubs.organisational-group

Duke

pubs.organisational-group

Clinical Science Departments

pubs.organisational-group

School of Medicine

pubs.publication-status

Published

pubs.volume

8

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Biomaterials-Mediated Regulation of Macrophage Cell Fate.pdf
Size:
5.73 MB
Format:
Adobe Portable Document Format
Description:
Published version