Knot contact homology, string topology, and the cord algebra

dc.contributor.author

Cieliebak, K

dc.contributor.author

Ekholm, T

dc.contributor.author

Latschev, J

dc.contributor.author

Ng, L

dc.date.accessioned

2018-12-11T15:18:13Z

dc.date.available

2018-12-11T15:18:13Z

dc.date.issued

2017

dc.date.updated

2018-12-11T15:18:12Z

dc.description.abstract

The conormal Lagrangian LKof a knot K in R3is the submanifold of the cotangent bundle T∗R3consisting of covectors along K that annihilate tangent vectors to K. By intersecting with the unit cotangent bundle S∗R3, one obtains the unit conormal ΛK, and the Legendrian contact homology of ΛKis a knot invariant of K, known as knot contact homology. We define a version of string topology for strings in R3∪ LKand prove that this is isomorphic in degree 0 to knot contact homology. The string topology perspective gives a topological derivation of the cord algebra (also isomorphic to degree 0 knot contact homology) and relates it to the knot group. Together with the isomorphism this gives a new proof that knot contact homology detects the unknot. Our techniques involve a detailed analysis of certain moduli spaces of holomorphic disks in T∗R3with boundary on R3∪ LK.

dc.identifier.issn

2429-7100

dc.identifier.issn

2270-518X

dc.identifier.uri

https://hdl.handle.net/10161/17778

dc.language

en

dc.publisher

Cellule MathDoc/CEDRAM

dc.relation.ispartof

Journal de l’École polytechnique — Mathématiques

dc.relation.isversionof

10.5802/jep.55

dc.subject

math.SG

dc.subject

math.SG

dc.subject

math.GT

dc.subject

53D42, 55P50, 57R17, 57M27

dc.title

Knot contact homology, string topology, and the cord algebra

dc.type

Journal article

duke.contributor.orcid

Ng, L|0000-0002-2443-5696

pubs.begin-page

661

pubs.end-page

780

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Duke

pubs.organisational-group

Mathematics

pubs.publication-status

Published

pubs.volume

4

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1601.02167v2.pdf
Size:
1.27 MB
Format:
Adobe Portable Document Format