Morphing tree structures for latent thermal energy storage

Loading...
Thumbnail Image

Date

2015-06-14

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

140
views
342
downloads

Citation Stats

Attention Stats

Abstract

© 2015 AIP Publishing LLC. Here, we report the numerical study of time dependent storage of energy by melting a phase change material. The heating is provided along invading lines, which change from single-line invasion to tree-shaped invasion. The numerical simulations show that the history of the amount of melted material is S-shaped. We also found that the fastest melting (i.e., the steepest S curve) is discovered by allowing the tree architecture to morph freely, toward greater access over time. The stem length and branching angle of invading trees can be selected such that the complete melting process is shorter. The melting process can also be made faster by increasing the complexity of the tree structure.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1063/1.4921442

Publication Info

Ziaei, S, S Lorente and A Bejan (2015). Morphing tree structures for latent thermal energy storage. Journal of Applied Physics, 117(22). 10.1063/1.4921442 Retrieved from https://hdl.handle.net/10161/15206.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Bejan

Adrian Bejan

J.A. Jones Distinguished Professor of Mechanical Engineering

Professor Bejan was awarded the Benjamin Franklin Medal 2018 and the Humboldt Research Award 2019. His research covers engineering science and applied physics: thermodynamics, heat transfer, convection, design, and evolution in nature.

He is ranked among the top 0.01% of the most cited and impactful world scientists (and top 10 in Engineering world wide) in the 2019 citations impact database created by Stanford University’s John Ioannidis, in PLoS Biology.  He is the author of 30 books and 700 peer-referred articles. His h-index is 111 with 92,000 citations on Google Scholar. He received 18 honorary doctorates from universities in 11 countries.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.