New SHIVs and Improved Design Strategy for Modeling HIV-1 Transmission, Immunopathogenesis, Prevention and Cure.

Abstract

Previously, we showed that substitution of HIV-1 Env residue 375-Ser by bulky aromatic residues enhances binding to rhesus CD4 and enables primary HIV-1 Envs to support efficient replication as simian-human immunodeficiency virus (SHIV) chimeras in rhesus macaques (RMs). Here, we test this design strategy more broadly by constructing SHIVs containing ten primary Envs corresponding to HIV-1 subtypes A, B, C, AE and AG. All ten SHIVs bearing wildtype Env375 residues replicated efficiently in human CD4+ T cells, but only one replicated efficiently in primary rhesus cells. This was a subtype AE SHIV that naturally contained His at Env375. Replacement of wildtype Env375 residues by Trp, Tyr, Phe or His in the other nine SHIVs led to efficient replication in rhesus CD4+ T cells in vitro and in vivo Nine SHIVs containing optimized Env375 alleles were grown large-scale in primary rhesus CD4+ T cells to serve as challenge stocks in preclinical prevention trials. These virus stocks were genetically homogeneous, native-like in Env antigenicity and tier-2 neutralization sensitivity, and transmissible by rectal, vaginal, penile, oral or intravenous routes. To facilitate future SHIV constructions, we engineered a simplified second-generation design scheme and validated it in RMs. Overall, our findings demonstrate that SHIVs bearing primary Envs with bulky aromatic substitutions at Env375 consistently replicate in RMs, recapitulating many features of HIV-1 infection in humans. Such SHIVs are efficiently transmitted by mucosal routes common to HIV-1 infection and can be used to test vaccine efficacy in preclinical monkey trials.ImportanceSHIV infection of Indian rhesus macaques is an important animal model for studying HIV-1 transmission, prevention, immunopathogenesis and cure. Such research is timely, given recent progress with active and passive immunization and novel approaches to HIV-1 cure. Given the multifaceted roles of HIV-1 Env in cell tropism and virus entry, and as a target for neutralizing and non-neutralizing antibodies, Envs selected for SHIV construction are of paramount importance. Until recently, it has been impossible to strategically design SHIVs bearing clinically relevant Envs that replicate consistently in monkeys. This changed with the discovery that bulky aromatic substitutions at residue Env375 confer enhanced affinity to rhesus CD4. Here, we show that 10 new SHIVs bearing primary HIV-1 Envs with residue 375 substitutions replicated efficiently in RMs and could be transmitted efficiently across rectal, vaginal, penile and oral mucosa. These findings suggest an expanded role for SHIVs as a model of HIV-1 infection.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1128/jvi.00071-21

Publication Info

Li, Hui, Shuyi Wang, Fang-Hua Lee, Ryan S Roark, Alex I Murphy, Jessica Smith, Chengyan Zhao, Juliette Rando, et al. (2021). New SHIVs and Improved Design Strategy for Modeling HIV-1 Transmission, Immunopathogenesis, Prevention and Cure. Journal of virology. 10.1128/jvi.00071-21 Retrieved from https://hdl.handle.net/10161/22522.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Denny

Thomas Norton Denny

Professor in Medicine

Thomas N. Denny, MSc, M.Phil, is the Chief Operating Officer of the Duke Human Vaccine Institute (DHVI), Associate Dean for Duke Research and Discovery @RTP, and a Professor of Medicine in the Department of Medicine at Duke University Medical Center. He is also an Affiliate Member of the Duke Global Health Institute. Previously, he served on the Health Sector Advisory Council of the Duke University Fuquay School of Business. Prior to joining Duke, he was an Associate Professor of Pathology, Laboratory Medicine and Pediatrics, Associate Professor of Preventive Medicine and Community Health and Assistant Dean for Research in Health Policy at the New Jersey Medical School, Newark, New Jersey. He has served on numerous committees for the NIH over the last two decades and currently is the principal investigator of an NIH portfolio in excess of 65 million dollars. Mr. Denny was a 2002-2003 Robert Wood Johnson Foundation Health Policy Fellow at the Institute of Medicine of the National Academies (IOM). As a fellow, he served on the US Senate Health, Education, Labor and Pensions Committee with legislation/policy responsibilities in global AIDS, bioterrorism, clinical trials/human subject protection and vaccine related-issues.

As the Chief Operating Officer of the DHVI, Mr. Denny has senior oversight of the DHVI research portfolio and the units/teams that support the DHVI mission. He has extensive international experience and previously was a consultant to the U.S. Centers for Disease Control and Prevention (CDC) for the President’s Emergency Plan for AIDS Relief (PEPFAR) project to oversee the development of an HIV and Public Health Center of Excellence laboratory network in Guyana. In September 2004, the IOM appointed him as a consultant to their Board on Global Health Committee studying the options for overseas placement of U.S. health professionals and the development of an assessment plan for activities related to the 2003 PEPFAR legislative act. In the 1980s, Mr. Denny helped establish a small laboratory in the Republic of Kalmykia (former Soviet Union) to improve the care of children with HIV/AIDS and served as a Board Member of the Children of Chernobyl Relief Fund Foundation. In 2005, Mr. Denny was named a consulting medical/scientific officer to the WHO Global AIDS Program in Geneva. He has also served as program reviewers for the governments of the Netherlands and South Africa as well as an advisor to several U.S. biotech companies. He currently serves as the Chair of the Scientific Advisory Board for Grid Biosciences.

Mr. Denny has authored and co-authored more than 200 peer-reviewed papers and serves on the editorial board of Communications in Cytometry and Journal of Clinical Virology. He holds an M.Sc in Molecular and Biomedical Immunology from the University of East London and a degree in Medical Law (M.Phil) from the Institute of Law and Ethics in Medicine, School of Law, University of Glasgow. In 1991, he completed a course of study in Strategic Management at The Wharton School, University of Pennsylvania. In 1993, he completed the Program for Advanced Training in Biomedical Research Management at Harvard School of Public Health. In December 2005, he was inducted as a Fellow into the College of Physicians of Philadelphia, the oldest medical society in the US.

While living in New Jersey, Mr. Denny was active in his community, gaining additional experience from two publicly elected positions. In 2000, Mr. Denny was selected by the New Jersey League of Municipalities to Chair the New Jersey Community Mental Health Citizens’ Advisory Board and Mental Health Planning Council as a gubernatorial appointment.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.