A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese.


To investigate the underlying mechanisms of T2D pathogenesis, we looked for diabetes susceptibility genes that increase the risk of type 2 diabetes (T2D) in a Han Chinese population. A two-stage genome-wide association (GWA) study was conducted, in which 995 patients and 894 controls were genotyped using the Illumina HumanHap550-Duo BeadChip for the first genome scan stage. This was further replicated in 1,803 patients and 1,473 controls in stage 2. We found two loci not previously associated with diabetes susceptibility in and around the genes protein tyrosine phosphatase receptor type D (PTPRD) (P = 8.54x10(-10); odds ratio [OR] = 1.57; 95% confidence interval [CI] = 1.36-1.82), and serine racemase (SRR) (P = 3.06x10(-9); OR = 1.28; 95% CI = 1.18-1.39). We also confirmed that variants in KCNQ1 were associated with T2D risk, with the strongest signal at rs2237895 (P = 9.65x10(-10); OR = 1.29, 95% CI = 1.19-1.40). By identifying two novel genetic susceptibility loci in a Han Chinese population and confirming the involvement of KCNQ1, which was previously reported to be associated with T2D in Japanese and European descent populations, our results may lead to a better understanding of differences in the molecular pathogenesis of T2D among various populations.





Published Version (Please cite this version)


Publication Info

Tsai, Fuu-Jen, Chi-Fan Yang, Ching-Chu Chen, Lee-Ming Chuang, Chieh-Hsiang Lu, Chwen-Tzuei Chang, Tzu-Yuan Wang, Rong-Hsing Chen, et al. (2010). A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet, 6(2). p. e1000847. 10.1371/journal.pgen.1000847 Retrieved from https://hdl.handle.net/10161/4464.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.


Yuan-Tsong Chen

Professor Emeritus of Pediatrics

Our overall research interests are in translational research. We aim at translating the promise of genomic medicine into clinical reality.

Specific projects at present time include:

1). Identification of novel genes/targets associated with human diseases. This includes susceptibility genes for common multi-factorial diseases and adverse drug reactions. Genetic epidemiology, mouse ENU mutagenesis, bioinformatics and proteomics are some approaches that we use in identification of novel genes associated with the human disease. Genetic markers associated with drug-induced Stevens-Johnson syndrome and other adverse drug reactions have been identified. Prospective studies are in progress to assess the utilization of these markers to prevent the adverse drug reactions. A systematic, genome-wide, phenotype-driven mutagenesis program for gene function studies in the mouse have resulted in the identification of several mouse models of human genetic metabolic diseases. We will continue our research along these lines to identify more novel disease genes/ targets and to increase our understanding of the diseases.

2). Genetics and molecular mechanisms of Stevens-Johnson syndrome. With the identification of HLA-B allele strongly linked to the genetic susceptibility to the drug-induced Stevens-Johnson syndrome, we are investigating how the specific HLA allele mediated the cell toxicity in causing disseminated keratinocyte death.

3). Functional characterization of a novel glucose transporter and its role in diabetes mellitus. We cloned a novel glucose transporter (Glu 10), which is highly expressed in pancreas and liver and is located on a region of a chromosome where a diabetes mellitus type II locus has been mapped. We are currently investigating its role in diabetes by studying mouse models carrying the GLU10 mutations and by direct genetic association study of human patients affected with diabetes.

4). Enzyme and gene therapy and targeting mechanisms of Pompe disease.
Pompe disease is a fatal genetic muscle disorder. As enzyme replacement therapy for Pompe disease moves into clinical reality the fundamental question of how the enzyme targets the heart and skeletal muscle and why some patients respond better than others remain unanswered. We have generated tissue-specific MPR300 knockout mouse model and other animal models to help answer these questions.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.