Kidney Disease Modeling with Organoids and Organs-on-Chips.
Date
2024-07
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Kidney disease is a global health crisis affecting more than 850 million people worldwide. In the United States, annual Medicare expenditures for kidney disease and organ failure exceed $81 billion. Efforts to develop targeted therapeutics are limited by a poor understanding of the molecular mechanisms underlying human kidney disease onset and progression. Additionally, 90% of drug candidates fail in human clinical trials, often due to toxicity and efficacy not accurately predicted in animal models. The advent of ex vivo kidney models, such as those engineered from induced pluripotent stem (iPS) cells and organ-on-a-chip (organ-chip) systems, has garnered considerable interest owing to their ability to more accurately model tissue development and patient-specific responses and drug toxicity. This review describes recent advances in developing kidney organoids and organ-chips by harnessing iPS cell biology to model human-specific kidney functions and disease states. We also discuss challenges that must be overcome to realize the potential of organoids and organ-chips as dynamic and functional conduits of the human kidney. Achieving these technological advances could revolutionize personalized medicine applications and therapeutic discovery for kidney disease.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Musah, Samira, Rohan Bhattacharya and Jonathan Himmelfarb (2024). Kidney Disease Modeling with Organoids and Organs-on-Chips. Annual review of biomedical engineering, 26(1). pp. 383–414. 10.1146/annurev-bioeng-072623-044010 Retrieved from https://hdl.handle.net/10161/31824.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Samira Musah
The Musah Lab is interested in understanding how molecular signals and biophysical forces can function either synergistically or independently to guide organ development and physiology, and how these processes can be therapeutically harnessed to treat human disease. Given the escalating medical crisis in nephrology as growing number of patients suffer from kidney disease that can lead to organ failure, the Musah Lab focuses on engineering stem cell fate for applications in human kidney disease, extra-renal complications, and therapeutic development. Dr. Musah’s research interests include stem cell biology and regenerative medicine, molecular and cellular basis of human organ development and disease progression, organ engineering, patient-specific disease models, biomarker identification, therapeutic discovery, tissue and organ transplantation, microphysiological systems including Organ Chips (organs-on-chips) and organoids, matrix biology, mechanotransduction and disease biophysics.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.