ON ARC INDEX AND MAXIMAL THURSTON–BENNEQUIN NUMBER

dc.contributor.author

Ng, L

dc.date.accessioned

2018-12-11T15:22:29Z

dc.date.available

2018-12-11T15:22:29Z

dc.date.issued

2012-04

dc.date.updated

2018-12-11T15:22:28Z

dc.description.abstract

We discuss the relation between arc index, maximal ThurstonBennequin number, and Khovanov homology for knots. As a consequence, we calculate the arc index and maximal ThurstonBennequin number for all knots with at most 11 crossings. For some of these knots, the calculation requires a consideration of cables which also allows us to compute the maximal self-linking number for all knots with at most 11 crossings. © 2012 World Scientific Publishing Company.

dc.identifier.issn

0218-2165

dc.identifier.issn

1793-6527

dc.identifier.uri

https://hdl.handle.net/10161/17789

dc.language

English

dc.publisher

World Scientific Pub Co Pte Lt

dc.relation.ispartof

Journal of Knot Theory and Its Ramifications

dc.relation.isversionof

10.1142/S0218216511009820

dc.subject

Science & Technology

dc.subject

Physical Sciences

dc.subject

Mathematics

dc.subject

Legendrian knot

dc.subject

arc index

dc.subject

Thurston-Bennequin number

dc.subject

self-linking number

dc.subject

Khovanov homology

dc.subject

KHOVANOV HOMOLOGY

dc.subject

TRANSVERSE KNOTS

dc.subject

LEGENDRIAN LINKS

dc.subject

POLYNOMIALS

dc.title

ON ARC INDEX AND MAXIMAL THURSTON–BENNEQUIN NUMBER

dc.type

Journal article

duke.contributor.orcid

Ng, L|0000-0002-2443-5696

pubs.begin-page

1250031

pubs.end-page

1250031

pubs.issue

04

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Duke

pubs.organisational-group

Mathematics

pubs.publication-status

Published

pubs.volume

21

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0612356v4.pdf
Size:
169.42 KB
Format:
Adobe Portable Document Format