Using the institutional grammar tool to understand regulatory compliance: The case of Colorado aquaculture

Loading...
Thumbnail Image

Date

2012-06-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

225
views
643
downloads

Citation Stats

Abstract

What is the relationship between the design of regulations and levels of individual compliance? To answer this question, Crawford and Ostrom's institutional grammar tool is used to deconstruct regulations governing the aquaculture industry in Colorado, USA. Compliance with the deconstructed regulatory components is then assessed based on the perceptions of the appropriateness of the regulations, involvement in designing the regulations, and intrinsic and extrinsic motivations. The findings suggest that levels of compliance with regulations vary across and within individuals regarding various aspects of the regulatory components. As expected, the level of compliance is affected by the perceived appropriateness of regulations, participation in designing the regulations, and feelings of guilt and fear of social disapproval. Furthermore, there is a strong degree of interdependence among the written components, as identified by the institutional grammar tool, in affecting compliance levels. The paper contributes to the regulation and compliance literature by illustrating the utility of the institutional grammar tool in understanding regulatory content, applying a new Q-Sort technique for measuring individual levels of compliance, and providing a rare exploration into feelings of guilt and fear outside of the laboratory setting. © 2012 Blackwell Publishing Asia Pty Ltd.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1111/j.1748-5991.2012.01132.x

Publication Info

Siddiki, S, X Basurto and CM Weible (2012). Using the institutional grammar tool to understand regulatory compliance: The case of Colorado aquaculture. Regulation and Governance, 6(2). pp. 167–188. 10.1111/j.1748-5991.2012.01132.x Retrieved from https://hdl.handle.net/10161/6738.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Basurto

Xavier Basurto

Adjunct Professor in the Division of Marine Science and Conservation

I am interested in the fundamental question of how groups (human and non-human) can find ways to self-organize, cooperate, and engage in successful collective action for the benefit of the common good. To do this I strive to understand how the institutions (formal and informal rules and norms) that govern social behavior, interplay with biophysical variables to shape social-ecological systems. What kind of institutions are better able to govern complex-adaptive systems? and how can societies (large and small) develop robust institutions that provide enough flexibility for collective learning and adaptation over the long-term?

My academic and professional training is based on a deep conviction that it is through integrating different disciplinary perspectives and methods that we will be able to find solutions to challenging dilemmas in natural resources management, conservation, and environmental policy. Trained as a marine biologist, I completed a M.S in natural resources studying small-scale fisheries in the Gulf of California, Mexico. Realizing the need to bring social science theories into my work on common-pool resources sustainability, I earned an MPA and a Ph.D. in Management (with a minor in cultural anthropology) from the University of Arizona and under the supervision of Edella Schlager. Following I spent two years working with Elinor Ostrom, 2009 co-winner of the Nobel Prize in Economics, at the Workshop for Political Theory and Policy Analysis of Indiana University. Methodologically, I am familiar with a variety of quantitative and qualitative approaches and formally trained to conduct Qualitative Comparative Analysis (QCA or more recently fsQCA), that allows among other things, systematic comparisons of middle range N sample sizes and address issues of multiple-causality.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.