Some Advances in Nonparametric Statistics
Date
2023
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
Nonparametric statistics is an important branch of statistics that utilize infinite dimensional modelsto achieve great flexibility. However, such flexibility often comes with difficulties in computations and convergent properties. One approach is to study the natural patterns for one type of datasets and summarize such patterns into mathematical assumptions that can potentially provide computational and theoretical benefits. I carried out the above idea on three different problems. The first problem is the classification trees for imbalanced datasets, where I formulate the regularity of shapes into surface-to-volumeratio and develop satisfactory theory and methodology using this ratio. The second problem is the approximation of Gaussian process, where I observe the critical role of spatial decaying covariance function in Gaussian process approximations and use such decaying properties to prove the approximation error for my proposed method. The last problem is the posterior contraction rates in Kullback-Leibler (KL) divergence, where I am motivated by the dismatch between KL divergence and Hellinger distance and develop a posterior contraction theory entirely based on KL divergence
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Citation
Zhu, Yichen (2023). Some Advances in Nonparametric Statistics. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/27709.
Collections
Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.