On explicit $L^2$-convergence rate estimate for underdamped Langevin dynamics

dc.contributor.author

Cao, Yu

dc.contributor.author

Lu, Jianfeng

dc.contributor.author

Wang, Lihan

dc.date.accessioned

2020-07-30T01:20:45Z

dc.date.available

2020-07-30T01:20:45Z

dc.date.updated

2020-07-30T01:20:44Z

dc.description.abstract

We provide a new explicit estimate of exponential decay rate of underdamped Langevin dynamics in $L^2$ distance. To achieve this, we first prove a Poincar'{e}-type inequality with Gibbs measure in space and Gaussian measure in momentum. Our new estimate provides a more explicit and simpler expression of decay rate; moreover, when the potential is convex with Poincar'{e} constant $m \ll 1$, our new estimate offers the decay rate of $\mathcal{O}(\sqrt{m})$ after optimizing the choice of friction coefficient, which is much faster compared to $\mathcal{O}(m)$ for the overdamped Langevin dynamics.

dc.identifier.uri

https://hdl.handle.net/10161/21209

dc.subject

math.AP

dc.subject

math.AP

dc.subject

math.PR

dc.title

On explicit $L^2$-convergence rate estimate for underdamped Langevin dynamics

dc.type

Journal article

duke.contributor.orcid

Lu, Jianfeng|0000-0001-6255-5165

duke.contributor.orcid

Wang, Lihan|0000-0002-9130-0505

pubs.organisational-group

Student

pubs.organisational-group

Mathematics

pubs.organisational-group

Duke

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Chemistry

pubs.organisational-group

Physics

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1908.04746v3.pdf
Size:
345.18 KB
Format:
Adobe Portable Document Format