Plasmon-induced electrical conduction in molecular devices.
Date
2010-02-23
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Metal nanoparticles (NPs) respond to electromagnetic waves by creating surface plasmons (SPs), which are localized, collective oscillations of conduction electrons on the NP surface. When interparticle distances are small, SPs generated in neighboring NPs can couple to one another, creating intense fields. The coupled particles can then act as optical antennae capturing and refocusing light between them. Furthermore, a molecule linking such NPs can be affected by these interactions as well. Here, we show that by using an appropriate, highly conjugated multiporphyrin chromophoric wire to couple gold NP arrays, plasmons can be used to control electrical properties. In particular, we demonstrate that the magnitude of the observed photoconductivity of covalently interconnected plasmon-coupled NPs can be tuned independently of the optical characteristics of the molecule-a result that has significant implications for future nanoscale optoelectronic devices.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Banerjee, Parag, David Conklin, Sanjini Nanayakkara, Tae-Hong Park, Michael J Therien and Dawn A Bonnell (2010). Plasmon-induced electrical conduction in molecular devices. ACS Nano, 4(2). pp. 1019–1025. 10.1021/nn901148m Retrieved from https://hdl.handle.net/10161/4102.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Michael J. Therien
Our research involves the synthesis of compounds, supermolecular assemblies, nano-scale objects, and electronic materials with unusual ground-and excited-state characteristics, and interrogating these structures using state-of-the-art transient optical, spectroscopic, photophysical, and electrochemical methods. Research activities span physical inorganic chemistry, physical organic chemistry, synthetic chemistry, bioinorganic chemistry, spectroscopy, photophysics, excited-state dynamics, spintronics, and imaging. My laboratory: (i) designs chromophores and supermolecules that display exceptional opto-electronic properties and elucidates their excited-state dynamics, (ii) engineers highly conjugated molecular structures for optical limiting, specialized emission, and high charge mobility, (iii) designs conjugated materials and hybrid molecular-nanoscale structures for energy conversion reactions, (iv) develops molecular wires that propagate spin-polarized currents, (v) fabricates emissive nanoscale structures for in vivo optical imaging, (vi) engineers de novo transition metal cofactor-binding proteins that test light-driven biological energy transducing mechanisms and realize opto-electronic functionalities not found in nature, and (vii) designs and interrogates complex molecular and nanoscale assemblies in which ultrafast energy and charge migration reactions are controlled by quantum coherence effects.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.