Testosterone, signal coloration, and signal color perception in male zebra finch contests.
Date
2022-02
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Many animals use assessment signals to resolve contests over limited resources while minimizing the costs of those contests. The carotenoid-based orange to red bills of male zebra finches (Taeniopygia guttata) are thought to function as assessment signals in male-male contests, but behavioral analyses relating contest behaviors and outcomes to bill coloration have yielded mixed results. We examined the relationship between bill color and contests while incorporating measurements of color perception and testosterone (T) production, for an integrative view of aggressive signal behavior, production, and perception. We assayed the T production capabilities of 12 males in response to a gonadotropin-releasing hormone (GnRH) challenge. We then quantified the initiation, escalation, and outcome of over 400 contests in the group, and measured bill color using calibrated photography. Finally, because signal perception can influence signal function, we tested how males perceive variation in bill coloration, asking if males exhibit categorical perception of bill color, as has been shown recently in female zebra finches. The data suggest that males with greater T production capabilities than their rivals were more likely to initiate contests against those rivals, while males with redder bills than their rivals were more likely to win contests. Males exhibited categorical color perception, but individual variation in the effect of categorical perception on color discrimination abilities did not predict any aspects of contest behavior or outcomes. Our results are consistent with the hypotheses that T plays a role in zebra finch contests and that bill coloration functions as an aggressive signal. We suggest future approaches, based on animal contest theory, for how links among signals, perception, and assessment can be tested.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Green, PA, EM George, KA Rosvall, S Johnsen and S Nowicki (2022). Testosterone, signal coloration, and signal color perception in male zebra finch contests. Ethology : formerly Zeitschrift fur Tierpsychologie, 128(2). pp. 131–142. 10.1111/eth.13247 Retrieved from https://hdl.handle.net/10161/26532.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Sonke Johnsen
Stephen Nowicki
Our lab studies animal communication, asking both proximate and ultimate questions about how signaling systems function and how they evolve. Most of our work is done with birds, although lab members have studied a variety of other taxa. One major theme that runs through our work is to understand how signal reliability (“honesty”) is maintained in the face of the competing evolutionary interests of signal senders and receivers. We use both laboratory experiments and field-based analyses to test hypotheses about the costs of signal production, which theory suggests are necessary to maintain reliability. For example, we have demonstrated that the reliability of birdsong as a signal of quality in the context of mate choice is maintained by variation in the response of young birds to early developmental stress, which in turn affects brain development and song learning. Another theme that runs through our work concerns how animals themselves perceive signals, in particular the role of categorical perception in communication. Our work here began with birdsong, for example demonstrating context-dependent variation in category boundaries that define the smallest acoustic units of song (“notes”), and identifying categorical responses of neurons in the “song system” of the brain to variation in those notes. More recently, we have begun to study categorical perception in visual signaling, demonstrating for example that the carotenoid-based orange-red coloration commonly used in assessment signaling may be perceived categorically. This finding illustrates the connection between our interests in perception and reliability, given that canonical models of reliability assume continuous perception.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.