Increased tryptophan, but not increased glucose metabolism, predict resistance of pembrolizumab in stage III/IV melanoma.


Clinical trials of combined IDO/PD1 blockade in metastatic melanoma (MM) failed to show additional clinical benefit compared to PD1-alone inhibition. We reasoned that a tryptophan-metabolizing pathway other than the kynurenine one is essential. We immunohistochemically stained tissues along the nevus-to-MM progression pathway for tryptophan-metabolizing enzymes (TMEs; TPH1, TPH2, TDO2, IDO1) and the tryptophan transporter, LAT1. We assessed tryptophan and glucose metabolism by performing baseline C11-labeled α-methyl tryptophan (C11-AMT) and fluorodeoxyglucose (FDG) PET imaging of tumor lesions in a prospective clinical trial of pembrolizumab in MM (, NCT03089606). We found higher protein expression of all TMEs and LAT1 in melanoma cells than tumor-infiltrating lymphocytes (TILs) within MM tumors (n = 68). Melanoma cell-specific TPH1 and LAT1 expressions were significantly anti-correlated with TIL presence in MM. High melanoma cell-specific LAT1 and low IDO1 expression were associated with worse overall survival (OS) in MM. Exploratory optimal cutpoint survival analysis of pretreatment 'high' vs. 'low' C11-AMT SUVmax of the hottest tumor lesion per patient revealed that the 'low' C11-AMT SUVmax was associated with longer progression-free survival in our clinical trial (n = 26). We saw no such trends with pretreatment FDG PET SUVmax. Treatment of melanoma cell lines with telotristat, a TPH1 inhibitor, increased IDO expression and kynurenine production in addition to suppression of serotonin production. High melanoma tryptophan metabolism is a poor predictor of pembrolizumab response and an adverse prognostic factor. Serotoninergic but not kynurenine pathway activation may be significant. Melanoma cells outcompete adjacent TILs, eventually depriving the latter of an essential amino acid.





Published Version (Please cite this version)


Publication Info

Oldan, Jorge D, Benjamin C Giglio, Eric Smith, Weiling Zhao, Deeanna M Bouchard, Marija Ivanovic, Yueh Z Lee, Frances A Collichio, et al. (2023). Increased tryptophan, but not increased glucose metabolism, predict resistance of pembrolizumab in stage III/IV melanoma. Oncoimmunology, 12(1). p. 2204753. 10.1080/2162402x.2023.2204753 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Terence Z. Wong

Professor of Radiology
  1. Anatomic/functional oncologic Imaging: SPECT/CT, PET/CT, novel PET radiotracers

    2. Radiotheranostics, Radionuclide therapy of cancer, Radiation Therapy Planning

    3. Imaging biomarkers for guiding treatment strategies

    4. Multicenter clinical trial development (NCI National Clinical Trials Network)

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.