Von Uexküll Revisited: Addressing Human Biases in the Study of Animal Perception.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


More than 100 years ago, the biologist Jakob von Uexküll suggested that, because sensory systems are diverse, animals likely inhabit different sensory worlds (umwelten) than we do. Since von Uexküll, work across sensory modalities has confirmed that animals sometimes perceive sensory information that humans cannot, and it is now well-established that one must account for this fact when studying an animal's behavior. We are less adept, however, at recognizing cases in which non-human animals may not detect or perceive stimuli the same way we do, which is our focus here. In particular, we discuss three ways in which our own perception can result in misinformed hypotheses about the function of various stimuli. In particular, we may (1) make untested assumptions about how sensory information is perceived, based on how we perceive or measure it, (2) attribute undue significance to stimuli that we perceive as complex or striking, and (3) assume that animals divide the sensory world in the same way that we as scientists do. We discuss each of these biases and provide examples of cases where animals cannot perceive or are not attending to stimuli in the same way that we do, and how this may lead us to mistaken assumptions. Because what an animal perceives affects its behavior, we argue that these biases are especially important for researchers in sensory ecology, cognition, and animal behavior and communication to consider. We suggest that studying animal umwelten requires integrative approaches that combine knowledge of sensory physiology with behavioral assays.





Published Version (Please cite this version)


Publication Info

Caves, Eleanor M, Stephen Nowicki and Sönke Johnsen (2019). Von Uexküll Revisited: Addressing Human Biases in the Study of Animal Perception. Integrative and comparative biology, 59(6). pp. 1451–1462. 10.1093/icb/icz073 Retrieved from https://hdl.handle.net/10161/26541.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Stephen Nowicki

Professor of Biology

Our lab studies animal communication, asking both proximate and ultimate questions about how signaling systems function and how they evolve. Most of our work is done with birds, although lab members have studied a variety of other taxa. One major theme that runs through our work is to understand how signal reliability (“honesty”) is maintained in the face of the competing evolutionary interests of signal senders and receivers. We use both laboratory experiments and field-based analyses to test hypotheses about the costs of signal production, which theory suggests are necessary to maintain reliability. For example, we have demonstrated that the reliability of birdsong as a signal of quality in the context of mate choice is maintained by variation in the response of young birds to early developmental stress, which in turn affects brain development and song learning. Another theme that runs through our work concerns how animals themselves perceive signals, in particular the role of categorical perception in communication. Our work here began with birdsong, for example demonstrating context-dependent variation in category boundaries that define the smallest acoustic units of song (“notes”), and identifying categorical responses of neurons in the “song system” of the brain to variation in those notes. More recently, we have begun to study categorical perception in visual signaling, demonstrating for example that the carotenoid-based orange-red coloration commonly used in assessment signaling may be perceived categorically. This finding illustrates the connection between our interests in perception and reliability, given that canonical models of reliability assume continuous perception.


Sonke Johnsen

Professor of Biology

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.