Variation in chromosome copy number influences the virulence of Cryptococcus neoformans and occurs in isolates from AIDS patients.

Abstract

BACKGROUND: The adaptation of pathogenic fungi to the host environment via large-scale genomic changes is a poorly characterized phenomenon. Cryptococcus neoformans is the leading cause of fungal meningoencephalitis in HIV/AIDS patients, and we recently discovered clinical strains of the fungus that are disomic for chromosome 13. Here, we examined the genome plasticity and phenotypes of monosomic and disomic strains, and compared their virulence in a mouse model of cryptococcosis RESULTS: In an initial set of strains, melanin production was correlated with monosomy at chromosome 13, and disomic variants were less melanized and attenuated for virulence in mice. After growth in culture or passage through mice, subsequent strains were identified that varied in melanin formation and exhibited copy number changes for other chromosomes. The correlation between melanin and disomy at chromosome 13 was observed for some but not all strains. A survey of environmental and clinical isolates maintained in culture revealed few occurrences of disomic chromosomes. However, an examination of isolates that were freshly collected from the cerebrospinal fluid of AIDS patients and minimally cultured provided evidence for infections with multiple strains and copy number variation. CONCLUSIONS: Overall, these results suggest that the genome of C. neoformans exhibits a greater degree of plasticity than previously appreciated. Furthermore, the expression of an essential virulence factor and the severity of disease are associated with genome variation. The occurrence of chromosomal variation in isolates from AIDS patients, combined with the observed influence of disomy on virulence, indicates that genome plasticity may have clinical relevance.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1186/1471-2164-12-526

Publication Info

Hu, Guanggan, Joyce Wang, Jaehyuk Choi, Won Hee Jung, Iris Liu, Anastasia P Litvintseva, Tihana Bicanic, Rajeev Aurora, et al. (2011). Variation in chromosome copy number influences the virulence of Cryptococcus neoformans and occurs in isolates from AIDS patients. BMC Genomics, 12. p. 526. 10.1186/1471-2164-12-526 Retrieved from https://hdl.handle.net/10161/11071.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Mitchell

Thomas Greenfield Mitchell

Associate Professor Emeritus in Molecular Genetics and Microbiology

Among patients with AIDS, leukemia or other cancers, organ or bone marrow transplants, and similar immunocompromising risk factors, the incidence of opportunistic mycoses and the number of different fungal pathogens are increasing dramatically. For many of these fungi, the definition of a species and the recognition of pathogen are highly problematic. Conventional methods of identification are based on morphological and physiological characteristics and are often time-consuming, difficult to interpret, and inconsistent. This laboratory is using DNA-based methods to (i) identify fungal pathogens, (ii) resolve taxonomic issues, (iii) facilitate epidemiological studies, (iv) recognize strains with clinically relevant phenotypes, such as resistance to antifungal drugs, (v) elucidate the origin(s) of diversity and the population genetics of the major pathogens, and (vi) explore functional genomics to identify virulence factors. We have developed reliable methods to genotype strains and are analyzing gene sequences to clarify the phylogeny of controversial taxa.

To conduct rigorous population studies of Candida albicans, we developed single-locus markers based on polymorphisms of PCR products. Genotypic frequencies and segregation patterns at these loci have confirmed that C. albicans is diploid and suggest that some form of recombination occurs in this "asexual" yeast. To investigate whether separate populations of C. albicans exist in disparate geographical locations, we compared strains collected from healthy and HIV-infected persons in U.S. and Brazil. Although a number of different genotypes were recognized at each location, the same multilocus genotype was prevalent among the clinical isolates, indicating a remarkable homogeneity among these populations.

We are using DNA-based methods to compare global isolates of Cryptococcus neoformans from patients with AIDS and other sources, to analyze the distribution and relatedness of strains, to identify genotypes of clinical importance, and to create linkage map of this pathogen. To determine the source of C. neoformans in patients, we developed a genetic markers to investigate the structure of clinical and environmental populations. With analysis of quantitative trait loci, specific genotypes will be identified that represent clones that have significantly diverged with respect to clinically relevant phenotypes, including susceptibility to antifungal drugs and the expression of virulence factors. We are investigating genomic evolution and phenotypic variation in natural populations of C. neoformans. These approaches will correlate genotypes with pathobiological phenotypes, leading to beneficial and predictive information about the epidemiology, diagnosis and prognosis of cryptococcosis in patients with AIDS.

Perfect

John Robert Perfect

James B. Duke Distinguished Professor of Medicine

Research in my laboratory focuses around several aspects of medical mycology. We are investigating antifungal agents (new and old) in animal models of candida and cryptococcal infections. We have examined clinical correlation of in vitro antifungal susceptibility testing and with in vivo outcome. Our basic science project examines the molecular pathogenesis of cryptococcal infections. We have developed a molecular foundation for C. neoformans, including transformation systems, gene disruptions, differential gene expression screens, and cloning pathogenesis genes. The goal of this work is to use C. neoformans as a model yeast system to identify molecular targets for antifungal drug development. There are a series of clinical trials in fungal infections which are being coordinated through this laboratory and my work also includes a series of antibiotic trials in various aspects of infections. Finally, we have now been awarded a NIH sponsored Mycology Unit for 5 years with 6 senior investigators which is focused on C. neoformans as a pathogenic model system, but will include multiple areas of medical mycology from diagnosis to treatment.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.