Systematic mapping of the monkey inferior colliculus reveals enhanced low frequency sound representation.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


We investigated the functional architecture of the inferior colliculus (IC) in rhesus monkeys. We systematically mapped multiunit responses to tonal stimuli and noise in the IC and surrounding tissue of six rhesus macaques, collecting data at evenly placed locations and recording nonresponsive locations to define boundaries. The results show a modest tonotopically organized region (17 of 100 recording penetration locations in 4 of 6 monkeys) surrounded by a large mass of tissue that, although vigorously responsive, showed no clear topographic arrangement (68 of 100 penetration locations). Rather, most cells in these recordings responded best to frequencies at the low end of the macaque auditory range. The remaining 15 (of 100) locations exhibited auditory responses that were not sensitive to sound frequency. Potential anatomical correlates of functionally defined regions and implications for midbrain auditory prosthetic devices are discussed.





Published Version (Please cite this version)


Publication Info

Bulkin, David A, and Jennifer M Groh (2011). Systematic mapping of the monkey inferior colliculus reveals enhanced low frequency sound representation. Journal of neurophysiology, 105(4). pp. 1785–1797. 10.1152/jn.00857.2010 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Jennifer M. Groh

Professor of Psychology and Neuroscience

Research in my laboratory concerns how sensory and motor systems work together, and how neural representations play a combined role in sensorimotor and cognitive processing (embodied cognition).

Most of our work concerns the interactions between vision and hearing. We frequently perceive visual and auditory stimuli as being bound together if they seem likely to have arisen from a common source. That's why we tend not to notice that the speakers on TV sets or in movie theatres are located beside, and not behind, the screen. Research in my laboratory is devoted to investigating the question of how the brain coordinates the information arising from the ears and eyes. Our findings challenge the historical view of the brain's sensory processing as being automatic, autonomous, and immune from outside influence. We have recently established that neurons in the auditory pathway (inferior colliculus, auditory cortex) alter their responses to sound depending on where the eyes are pointing. This finding suggests that the different sensory pathways meddle in one another's supposedly private affairs, making their respective influences felt even at very early stages of processing. The process of bringing the signals from two different sensory pathways into a common frame of reference begins at a surprisingly early point along the primary sensory pathways.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.