Auditory signals evolve from hybrid- to eye-centered coordinates in the primate superior colliculus.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


Visual and auditory spatial signals initially arise in different reference frames. It has been postulated that auditory signals are translated from a head-centered to an eye-centered frame of reference compatible with the visual spatial maps, but, to date, only various forms of hybrid reference frames for sound have been identified. Here, we show that the auditory representation of space in the superior colliculus involves a hybrid reference frame immediately after the sound onset but evolves to become predominantly eye centered, and more similar to the visual representation, by the time of a saccade to that sound. Specifically, during the first 500 ms after the sound onset, auditory response patterns (N = 103) were usually neither head nor eye centered: 64% of neurons showed such a hybrid pattern, whereas 29% were more eye centered and 8% were more head centered. This differed from the pattern observed for visual targets (N = 156): 86% were eye centered, <1% were head centered, and only 13% exhibited a hybrid of both reference frames. For auditory-evoked activity observed within 20 ms of the saccade (N = 154), the proportion of eye-centered response patterns increased to 69%, whereas the hybrid and head-centered response patterns dropped to 30% and <1%, respectively. This pattern approached, although did not quite reach, that observed for saccade-related activity for visual targets: 89% were eye centered, 11% were hybrid, and <1% were head centered (N = 162). The plainly eye-centered visual response patterns and predominantly eye-centered auditory motor response patterns lie in marked contrast to our previous study of the intraparietal cortex, where both visual and auditory sensory and motor-related activity used a predominantly hybrid reference frame (Mullette-Gillman et al. 2005, 2009). Our present findings indicate that auditory signals are ultimately translated into a reference frame roughly similar to that used for vision, but suggest that such signals might emerge only in motor areas responsible for directing gaze to visual and auditory stimuli.





Published Version (Please cite this version)


Publication Info

Lee, Jungah, and Jennifer M Groh (2012). Auditory signals evolve from hybrid- to eye-centered coordinates in the primate superior colliculus. Journal of neurophysiology, 108(1). pp. 227–242. 10.1152/jn.00706.2011 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Jennifer M. Groh

Professor of Psychology and Neuroscience

Research in my laboratory concerns how sensory and motor systems work together, and how neural representations play a combined role in sensorimotor and cognitive processing (embodied cognition).

Most of our work concerns the interactions between vision and hearing. We frequently perceive visual and auditory stimuli as being bound together if they seem likely to have arisen from a common source. That's why we tend not to notice that the speakers on TV sets or in movie theatres are located beside, and not behind, the screen. Research in my laboratory is devoted to investigating the question of how the brain coordinates the information arising from the ears and eyes. Our findings challenge the historical view of the brain's sensory processing as being automatic, autonomous, and immune from outside influence. We have recently established that neurons in the auditory pathway (inferior colliculus, auditory cortex) alter their responses to sound depending on where the eyes are pointing. This finding suggests that the different sensory pathways meddle in one another's supposedly private affairs, making their respective influences felt even at very early stages of processing. The process of bringing the signals from two different sensory pathways into a common frame of reference begins at a surprisingly early point along the primary sensory pathways.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.