Automated problem list generation and physicians perspective from a pilot study
Date
2017-09-01
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Attention Stats
Abstract
An accurate, comprehensive and up-to-date problem list can help clinicians provide patient-centered care. Unfortunately, problem lists created and maintained in electronic health records by providers tend to be inaccurate, duplicative and out of date. With advances in machine learning and natural language processing, it is possible to automatically generate a problem list from the data in the EHR and keep it current. In this paper, we describe an automated problem list generation method and report on insights from a pilot study of physicians’ assessment of the generated problem lists compared to existing providers-curated problem lists in an institution's EHR system. Materials and methods The natural language processing and machine learning-based Watson 1
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Devarakonda, Murthy V, Neil Mehta, Ching-Huei Tsou, Jennifer J Liang, Amy S Nowacki and John Eric Jelovsek (2017). Automated problem list generation and physicians perspective from a pilot study. International Journal of Medical Informatics, 105. pp. 121–129. 10.1016/j.ijmedinf.2017.05.015 Retrieved from https://hdl.handle.net/10161/15105.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
John E Jelovsek
Dr. Jelovsek is the F. Bayard Carter Distinguished Professor of OBGYN at Duke University and serves as Director of Data Science for Women’s Health. He is Board Certified in OBGYN by the American Board of OBGYN and in Female Pelvic Medicine & Reconstructive Surgery by the American Board of OBGYN and American Board of Urology. He has an active surgical practice in urogynecology based out of Duke Raleigh. He has expertise as a clinician-scientist in developing and evaluating clinical prediction models using traditional biostatistics and machine learning approaches. These “individualized” patient-centered prediction tools aim to improve decision-making regarding the prevention of lower urinary tract symptoms (LUTS) and other pelvic floor disorders after childbirth (PMID:29056536), de novo stress urinary incontinence and other patient-perceived outcomes after pelvic organ prolapse surgery, risk of transfusion during gynecologic surgery, and urinary outcomes after mid-urethral sling surgery (PMID: 26942362). He also has significant expertise in leading trans-disciplinary teams through NIH-funded multi-center research networks and international settings. As alternate-PI for the Cleveland Clinic site in the NICHD Pelvic Floor Disorders Network, he was principal investigator on the CAPABLe trial (PMID: 31320277), one of the largest multi-center trials for fecal incontinence studying anal exercises with biofeedback and loperamide for the treatment of fecal incontinence. He was the principal investigator of the E-OPTIMAL study (PMID: 29677302), describing the long-term follow up sacrospinous ligament fixation compared to uterosacral ligament suspension for apical vaginal prolapse. He was also primary author on research establishing the minimum important clinical difference for commonly used measures of fecal incontinence. Currently, he serves as co-PI in the NIDDK Symptoms of Lower Urinary Tract Dysfunction Research Network (LURN) (U01DK097780-05) where he has been involved in studies in the development of Symptoms of Lower Urinary Tract Dysfunction Research Network Symptom Index-29 (LURN SI-29) and LURN SI-10 questionnaires for men and women with LUTS. He is also the site-PI for the PREMIER trial (1R01HD105892): Patient-Centered Outcomes of Sacrocolpopexy versus Uterosacral Ligament Suspension for the Treatment of Uterovaginal Prolapse.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.