Soil production and the soil geomorphology legacy of Grove Karl Gilbert

Loading...
Thumbnail Image

Date

2020-01-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

78
views
131
downloads

Citation Stats

Attention Stats

Abstract

© 2019 The Authors. Soil Science Society of America published by Wiley Periodicals, Inc. on behalf of Soil Science Society of America Geomorphologists are quantifying the rates of an important component of bedrock's weathering in research that needs wide discussion among soil scientists. By using cosmogenic nuclides, geomorphologists estimate landscapes’ physical lowering, which, in a steady landscape, equates to upward transfers of weathered rock into slowly moving hillslope-soil creep. Since the 1990s, these processes have been called “soil production” or “mobile regolith production”. In this paper, we assert the importance of a fully integrated pedological and geomorphological approach not only to soil creep but to soil, regolith, and landscape evolution; we clarify terms to facilitate soil geomorphology collaboration; and we seek a greater understanding of our sciences’ history. We show how the legacy of Grove Karl Gilbert extend across soil geomorphology. We interpret three contrasting soils and regoliths in the USA's Southern Piedmont in the context of a Gilbert-inspired model of weathering and transport, a model of regolith evolution and of nonsteady systems that liberate particles and solutes from bedrock and transport them across the landscape. This exercise leads us to conclude that the Southern Piedmont is a region with soils and regoliths derived directly from weathering bedrock below (a regional paradigm for more than a century) but that the Piedmont also has significant areas in which regoliths are at least partly formed from paleo-colluvia that may be massive in volume and overlie organic-enriched layers, peat, and paleo-saprolite. An explicitly integrated study of soil geomorphology can accelerate our understanding of soil, regoliths, and landscape evolution in all physiographic regions.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1002/saj2.20030

Publication Info

Richter, DD, MC Eppes, JC Austin, AR Bacon, SA Billings, Z Brecheisen, TA Ferguson, D Markewitz, et al. (2020). Soil production and the soil geomorphology legacy of Grove Karl Gilbert. Soil Science Society of America Journal, 84(1). pp. 1–20. 10.1002/saj2.20030 Retrieved from https://hdl.handle.net/10161/21227.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Richter

Daniel D. Richter

Professor in the Division of Earth and Climate Science

Richter’s research and teaching links soils with ecosystems and the wider environment, most recently Earth scientists’ Critical Zone.  He focuses on how humanity is transforming Earth’s soils from natural to human-natural systems, specifically how land-uses alter soil processes and properties on time scales of decades, centuries, and millennia.  Richter's book, Understanding Soil Change (Cambridge University Press), co-authored with his former PhD student Daniel Markewitz (Professor at University of Georgia), explores a legacy of soil change across the Southern Piedmont of North America, from the acidic soils of primary hardwood forests that covered the region until 1800, through the marked transformations affected by long-cultivated cotton, to contemporary soils of rapidly growing and intensively managed pine forests.  Richter and colleagues work to expand the concept of soil as the full biogeochemical weathering system of the Earth’s crust, ie, the Earth’s belowground Critical Zone, which can be tens of meters deep.  The research examines decadal to millennial changes in the chemistry and cycling of soil C, N, P, Ca, K, Mg, and trace elements B, Fe, Mn, Cu, Be, Zr, and Zn across full soil profiles as deep at 30-m.  Since 1988, Richter has worked at and directed the Long-Term Calhoun Soil-Ecosystem Experiment (LTSE) in the Piedmont of South Carolina, a collaborative study with the USDA Forest Service that quantifies how soils form as natural bodies and are transformed by human action, and a study that has grown to become an international model for such long-term soil and ecosystem studies.  In 2005, Richter and students initiated the first comprehensive international inventory project of the world’s LTSEs, using an advanced-format website that has networked metadata from 250 LTSEs.  The LTSEs project has held three workshops at Duke University, NCSU's Center for Environmental Farming Systems, and the USDA Forest Service's Calhoun Experimental Forest and Coweeta Hydrologic Laboratory, hosting representatives from Africa, Asia, Australia, Europe, and the Americas.  Richter's 60-year old Long Term Calhoun Soil and Ecosystem Experiment is linked to similar experiments and platforms around the world via the ‘Long-Term Soil-Ecosystem Experiments Global Inventory’, assembled by Dan Richter, Pete Smith, and Mike Hofmockel."He is an active member of the International Commission on Stratigraphy’s Working Group on the Anthropocene.  Richter has written in the peer-reviewed literature about all of these projects, and in November 2014 his soils research at the Calhoun and his soils teaching were featured in Science magazine.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.