Thermoelectric transport properties of CaMg 2Bi 2, EuMg 2Bi 2, and YbMg 2Bi 2

Loading...
Thumbnail Image

Date

2012-01-11

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

148
views
155
downloads

Citation Stats

Abstract

The thermoelectric transport properties of CaMg 2Bi 2, EuMg 2Bi 2, and YbMg 2Bi 2 were characterized between 2 and 650 K. As synthesized, the polycrystalline samples are found to have lower p-type carrier concentrations than single-crystalline samples of the same empirical formula. These low carrier concentration samples possess the highest mobilities yet reported for materials with the CaAl 2Si 2 structure type, with a mobility of ∼740 cm2/V/s observed in EuMg 2Bi 2 at 50 K. Despite decreases in the Seebeck coefficient (α) and electrical resistivity (ρ) with increasing temperature, the power factor (α2ρ) increases for all temperatures examined. This behavior suggests a strong asymmetry in the conduction of electrons and holes. The highest figure of merit (zT) is observed in YbMg 2Bi 2, with zT approaching 0.4 at 600 K for two samples with carrier densities of approximately 2×1018cm -3 and 8×1018 cm -3 at room temperature. Refinements of neutron powder diffraction data yield similar behavior for the structures of CaMg 2Bi 2 and YbMg 2Bi 2, with smooth lattice expansion and relative expansion in c being ∼35% larger than relative expansion in a at 973 K. First-principles calculations reveal an increasing band gap as Bi is replaced by Sb and then As, and subsequent Boltzmann transport calculations predict an increase in α for a given n associated with an increased effective mass as the gap opens. The magnitude and temperature dependence of α suggests higher zT is likely to be achieved at larger carrier concentrations, roughly an order of magnitude higher than those in the current polycrystalline samples, which is also expected from the detailed calculations. © 2012 American Physical Society.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1103/PhysRevB.85.035202

Publication Info

May, AF, MA McGuire, DJ Singh, J Ma, O Delaire, A Huq, W Cai, H Wang, et al. (2012). Thermoelectric transport properties of CaMg 2Bi 2, EuMg 2Bi 2, and YbMg 2Bi 2. Physical Review B - Condensed Matter and Materials Physics, 85(3). 10.1103/PhysRevB.85.035202 Retrieved from https://hdl.handle.net/10161/12654.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Delaire

Olivier Delaire

Associate Professor of the Thomas Lord Department of Mechanical Engineering and Materials Science

The Delaire group investigates atomistic transport processes of energy and charge, and thermodynamics in energy materials. We use a combined experimental and computational approach to understand and control microscopic energy transport for the design of next-generation materials, in particular for sustainable energy applications. Current materials of interest include superionic conductors, photovoltaics, thermoelectrics, ferroelectrics/multiferroics, and metal-insulator transitions. Our group's studies provide fundamental insights into  atomic dynamics and elementary excitations in condensed-matter systems (phonons, electrons, spins), their couplings and their effects on macroscopic properties. We probe the microscopic underpinnings of transport and thermodynamics properties by integrating neutron and x-ray scattering, optical spectroscopy, and thermal characterization, together with quantum-mechanical computer simulations.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.