Thermoelectric transport properties of CaMg 2Bi 2, EuMg 2Bi 2, and YbMg 2Bi 2
Date
2012-01-11
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
The thermoelectric transport properties of CaMg 2Bi 2, EuMg 2Bi 2, and YbMg 2Bi 2 were characterized between 2 and 650 K. As synthesized, the polycrystalline samples are found to have lower p-type carrier concentrations than single-crystalline samples of the same empirical formula. These low carrier concentration samples possess the highest mobilities yet reported for materials with the CaAl 2Si 2 structure type, with a mobility of ∼740 cm2/V/s observed in EuMg 2Bi 2 at 50 K. Despite decreases in the Seebeck coefficient (α) and electrical resistivity (ρ) with increasing temperature, the power factor (α2ρ) increases for all temperatures examined. This behavior suggests a strong asymmetry in the conduction of electrons and holes. The highest figure of merit (zT) is observed in YbMg 2Bi 2, with zT approaching 0.4 at 600 K for two samples with carrier densities of approximately 2×1018cm -3 and 8×1018 cm -3 at room temperature. Refinements of neutron powder diffraction data yield similar behavior for the structures of CaMg 2Bi 2 and YbMg 2Bi 2, with smooth lattice expansion and relative expansion in c being ∼35% larger than relative expansion in a at 973 K. First-principles calculations reveal an increasing band gap as Bi is replaced by Sb and then As, and subsequent Boltzmann transport calculations predict an increase in α for a given n associated with an increased effective mass as the gap opens. The magnitude and temperature dependence of α suggests higher zT is likely to be achieved at larger carrier concentrations, roughly an order of magnitude higher than those in the current polycrystalline samples, which is also expected from the detailed calculations. © 2012 American Physical Society.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
May, AF, MA McGuire, DJ Singh, J Ma, O Delaire, A Huq, W Cai, H Wang, et al. (2012). Thermoelectric transport properties of CaMg 2Bi 2, EuMg 2Bi 2, and YbMg 2Bi 2. Physical Review B - Condensed Matter and Materials Physics, 85(3). 10.1103/PhysRevB.85.035202 Retrieved from https://hdl.handle.net/10161/12654.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.