On the nonlinear electromagnetic coupling between a coil and an oscillating magnet

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


The electromagnetic induction of voltage across a coil due to the motion of a magnet is among the fundamental problems of physics, and it has a broad range of practical applications. While Maxwell's equations exactly describe this phenomenon, the physical complexity inherent in most realistic situations often prevents the generation of closed-form expressions for the electromagnetic coupling. This paper uses basic principles to develop an approximate analytical expression for the induced voltage in terms of a set of physical parameters, and experimental results demonstrate a high level of validity in the model over the parameter values tested. For oscillatory magnet motion about a point on a coil's axis, it is shown that the induced voltage is an infinite sum of harmonics at integer multiples of the oscillation frequency; the relative amplitudes of these harmonics vary as the magnet's equilibrium position migrates along the coil's axis, causing the odd and even harmonics to vanish, reappear and reach peak values at predictable locations. Several simplifications to the model are considered, and their validity is investigated analytically over a range of parameters. © 2010 IOP Publishing Ltd.






Published Version (Please cite this version)


Publication Info

Sneller, AJ, and BP Mann (2010). On the nonlinear electromagnetic coupling between a coil and an oscillating magnet. Journal of Physics D: Applied Physics, 43(29). pp. 1–10. 10.1088/0022-3727/43/29/295005 Retrieved from https://hdl.handle.net/10161/5094.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Brian Mann

Professor in the Thomas Lord Department of Mechanical Engineering and Materials Science

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.