Bayesian generalized product partition model
Date
2010-07-01
Authors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
Starting with a carefully formulated Dirichlet process (DP) mixture model, we derive a generalized product partition model (GPPM) in which the partition process is predictor-dependent. The GPPM generalizes DP clustering to relax the exchangeability assumption through the incorporation of predictors, resulting in a generalized Pólya urn scheme. In addition, the GPPM can be used for formulating flexible semiparametric Bayes models for conditional distribution estimation, bypassing the need for expensive computation of large numbers of unknowns characterizing priors for dependent collections of random probability measures. A variety of special cases are considered, and an efficient Gibbs sampling algorithm is developed for posterior computation. The methods are illustrated using simulation examples and an epidemiologic application.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Collections
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.