Bayesian generalized product partition model

Loading...
Thumbnail Image

Date

2010-07-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

441
views
779
downloads

Abstract

Starting with a carefully formulated Dirichlet process (DP) mixture model, we derive a generalized product partition model (GPPM) in which the partition process is predictor-dependent. The GPPM generalizes DP clustering to relax the exchangeability assumption through the incorporation of predictors, resulting in a generalized PĆ³lya urn scheme. In addition, the GPPM can be used for formulating flexible semiparametric Bayes models for conditional distribution estimation, bypassing the need for expensive computation of large numbers of unknowns characterizing priors for dependent collections of random probability measures. A variety of special cases are considered, and an efficient Gibbs sampling algorithm is developed for posterior computation. The methods are illustrated using simulation examples and an epidemiologic application.

Department

Description

Provenance

Subjects

Citation

Scholars@Duke

Dunson

David B. Dunson

Arts and Sciences Distinguished Professor of Statistical Science

My research focuses on developing new tools for probabilistic learning from complex data - methods development is directly motivated by challenging applications in ecology/biodiversity, neuroscience, environmental health, criminal justice/fairness, and more.  We seek to develop new modeling frameworks, algorithms and corresponding code that can be used routinely by scientists and decision makers.  We are also interested in new inference framework and in studying theoretical properties of methods we develop.  

Some highlight application areas: 
(1) Modeling of biological communities and biodiversity - we are considering global data on fungi, insects, birds and animals including DNA sequences, images, audio, etc.  Data contain large numbers of species unknown to science and we would like to learn about these new species, community network structure, and the impact of environmental change and climate.

(2) Brain connectomics - based on high resolution imaging data of the human brain, we are seeking to developing new statistical and machine learning models for relating brain networks to human traits and diseases.

(3) Environmental health & mixtures - we are building tools for relating chemical and other exposures (air pollution etc) to human health outcomes, accounting for spatial dependence in both exposures and disease.  This includes an emphasis on infectious disease modeling, such as COVID-19.

Some statistical areas that play a prominent role in our methods development include models for low-dimensional structure in data (latent factors, clustering, geometric and manifold learning), flexible/nonparametric models (neural networks, Gaussian/spatial processes, other stochastic processes), Bayesian inference frameworks, efficient sampling and analytic approximation algorithms, and models for "object data" (trees, networks, images, spatial processes, etc).





Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the authorā€™s grant of a non-exclusive license to make their work openly accessible.