IDLV-HIV-1 Env vaccination in non-human primates induces affinity maturation of antigen-specific memory B cells.
Date
2018-01
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
HIV continues to be a major global health issue. In spite of successful prevention interventions and treatment methods, the development of an HIV vaccine remains a major priority for the field and would be the optimal strategy to prevent new infections. We showed previously that a single immunization with a SIV-based integrase-defective lentiviral vector (IDLV) expressing the 1086.C HIV-1-envelope induced durable, high-magnitude immune responses in non-human primates (NHPs). In this study, we have further characterized the humoral responses by assessing antibody affinity maturation and antigen-specific memory B-cell persistence in two vaccinated macaques. These animals were also boosted with IDLV expressing the heterologous 1176.C HIV-1-Env to determine if neutralization breadth could be increased, followed by evaluation of the injection sites to assess IDLV persistence. IDLV-Env immunization was associated with persistence of the vector DNA for up to 6 months post immunization and affinity maturation of antigen-specific memory B cells.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Blasi, Maria, Donatella Negri, Celia LaBranche, S Munir Alam, Erich J Baker, Elizabeth C Brunner, Morgan A Gladden, Zuleika Michelini, et al. (2018). IDLV-HIV-1 Env vaccination in non-human primates induces affinity maturation of antigen-specific memory B cells. Communications biology, 1. p. 134. 10.1038/s42003-018-0131-6 Retrieved from https://hdl.handle.net/10161/17606.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Maria Blasi
Maria Blasi is an Associate Professor in the Department of Medicine, Division of Infectious Diseases, and a member of the Duke Human Vaccine Institute (DHVI) at Duke University School of Medicine. Dr. Blasi completed her undergraduate and Ph.D. studies in Italy at the Sapienza University in Rome. She moved to Duke in 2012 for a postdoctoral position in Mary Klotman’s laboratory at the Duke Human Vaccine Institute (DHVI). She joined the faculty at Duke in 2017.
The Blasi laboratory has two main areas of research: 1) understanding the mechanisms and implications of viral infections in the kidney, including HIV and SARS-CoV-2 and 2) development of vaccines and therapeutics against a variety of infectious diseases.
Dr. Blasi is also the co-director of the DHVI training mentoring program (DTMP). The DTMP is committed to providing an outstanding training environment and research experiences that will enhance trainees career and provide avenues to incorporate education, expertise, initiative and dedication to the success of the studies. The DTMP strives to support personal and professional growth of trainees in an environment of established trust, respect, realistic expectations, and effective communications.
Celia Crane LaBranche
S. Munir Alam
Research Interests.
The Alam laboratory’s primary research is focused on understanding the biophysical properties of antigen-antibody binding and the molecular events of early B cell activation using the HIV-1 broadly neutralizing antibody (bnAb) lineage models. We are studying how HIV-1 Envelope proteins of varying affinities are sensed by B cells expressing HIV-1 bnAbs or their germline antigen receptors and initiate early signaling events for their activation. In the long-term these studies will facilitate design and pre-selection of immunogens for testing in animal models and accelerate HIV-1 vaccine development.
Current research include the following NIAID-funded projects
Antigen recognition and activation of B cell antigen receptors with the specificity of HIV-1 broadly neutralizing antibodies. This project involves elucidating the early events on the B cell surface following antigen (Ag) engagement of the B cell antigen receptor (BCR) and to provide an assessment of the in vivo potential of an Ag to drive B cell activation. We are performing biophysical interactions analyses and using high-resolution microscopy to define the physico-chemical properties of BCR-Ag interactions that govern signaling and activation thresholds for BCR triggering and the BCR endocytic function in antigen internalization. The overall objective of these studies is to bridge the quantitative biophysical and membrane dynamics measurements of Ag-BCR interactions to ex-vivo and in-vivo B cell activation. This NIAID-funded research is a collaboration with co-investigators Professor Michael Reth (University of Freiburg, Germany) and Dr. Laurent Verkoczy (San Diego Biomedical Research Institute, CA).
Immunogen Design for Induction of HIV gp41 Broadly Neutralizing Antibodies. This research project addresses the critical problem of vaccine induction of disfavored HIV-1 antibody lineages, like those that target the membrane proximal external region (MPER) of HIV Env gp41. This program combines structure and lineage-based vaccine development strategies to design immunogens that will induce bnAb lineages that are not polyreactive and therefore easier to induce. The overall objective of this program grant is to develop and test sequential immunogens that will initiate and induce HIV-1 bnAb lineages like the potent MPER bnAb DH511. Using a germline-targeting (GT) epitope scaffold design and a prime/boost strategy, we are testing induction of DH511-like bnAbs in knock-in (KI) mice models expressing the DH511 germline receptors. This P01 research program is in collaboration with Dr. William Schief (The Scripps Research Institute, CA), who leads the team that are designing germline targeting (GT)-scaffold prime and boost immunogens and Dr. Ming Tian at Harvard University who developed relevant knock-mice models for the study.Kevin J Wiehe
Dr. Kevin Wiehe is the director of research, director of computational biology and co-director of the Quantitative Research Division at the Duke Human Vaccine Institute (DHVI). He has over 20 years of experience in the field of computational biology and has expertise in computational structural biology, computational genomics, and computational immunology.
For the past decade, he has applied his unique background to developing computational approaches for studying the B cell response in both the infection and vaccination settings. He has utilized his expertise in computational structural biology to structurally model and characterize HIV and influenza antibody recognition. Dr. Wiehe has utilized his expertise in computational genomics and computational immunology to develop software to analyze large scale next generation sequencing data of antibody repertoires as well as develop computational programs for estimating antibody mutation probabilities. Dr. Wiehe has shown that low probability antibody mutations can act as rate-limiting steps in the development of broadly neutralizing antibodies in HIV.
Through his PhD, postdoc work, and now his roles at DHVI, Dr. Wiehe always approaches the analysis and the scientific discovery process from a structural biology perspective. Supporting the Duke Center for HIV Structural Biology (DCHSB), Dr. Wiehe will conduct antibody sequence analysis for antibodies used in computational and molecular modeling analyses conducted.
Xiaoying Shen
Dr. Shen is an Associate Director and Deputy of the Laboratory for HIV and COVID-19 Vaccine Research & Development in the Department of Surgery, Division of Surgical Sciences at Duke University Medical Center. Her research interest focuses on the humoral immune response following virus infection or vaccination. During the past decade, she has worked intensively on the specificity and breadth of binding antibody responses against HIV.
Dr. Shen’s team developed assays and analytical tools for a peptide microarray assay for finely mapping of HIV-1 cross-subtype linear epitopes targeted by antibody responses in human specimens as well as animal models, and adopted a multiplex binding antibody assay for evaluating binding antibody responses. With these technologies, her team evaluated various clinical HIV-1 vaccine studies and NHP studies. Building upon the data generated by her team and other collaborators, Dr. Shen works with bioinformatics and biostatistics personnel on deciphering immune correlates in both human clinical trials and nonhuman primate studies. During the COVID-19 pandemic, her team expanded their research to SARS-COV-2 antibody responses.
In 2021, Dr. Shen became the Deputy Director of the Laboratory for HIV and COVID-19 Vaccine Research & Development, alongside Laboratory Director Dr. Montefiori. The laboratory established a lentivirus-based pseudovirus SARS-CoV-2 neutralization assay that has been FDA-approved. The laboratory is assessing neutralizing antibody responses for multiple phase 3 COVID-19 vaccine trials. In addition to supporting clinical trials, the lab has a strong focus on characterizing SARS-CoV-2 variants for their neutralizing susceptibility and potential to escape from vaccine-elicited immune responses.
Meanwhile, Dr. Shen’s team remains highly active in HIV-1 vaccine research, evaluating neutralizing responses in preclinical and clinical HIV vaccine trials as a core laboratory for multiple networks including the HIV Vaccine Trials Network (HVTN), the Collaboration for AIDS Vaccine Discovery (CAVD) funded by Bill & Melinda Gates Foundation, as well as the NIH Nonhuman Primate Core Humoral Immunology Laboratory for AIDS Vaccine which Dr. Shen directs.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.