A three-dimensional culture system recapitulates placental syncytiotrophoblast development and microbial resistance.
Date
2016-03-04
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
In eutherians, the placenta acts as a barrier and conduit at the maternal-fetal interface. Syncytiotrophoblasts, the multinucleated cells that cover the placental villous tree surfaces of the human placenta, are directly bathed in maternal blood and are formed by the fusion of progenitor cytotrophoblasts that underlie them. Despite their crucial role in fetal protection, many of the events that govern trophoblast fusion and protection from microbial infection are unknown. We describe a three-dimensional (3D)-based culture model using human JEG-3 trophoblast cells that develop syncytiotrophoblast phenotypes when cocultured with human microvascular endothelial cells. JEG-3 cells cultured in this system exhibit enhanced fusogenic activity and morphological and secretory activities strikingly similar to those of primary human syncytiotrophoblasts. RNASeq analyses extend the observed functional similarities to the transcriptome, where we observed significant overlap between syncytiotrophoblast-specific genes and 3D JEG-3 cultures. Furthermore, JEG-3 cells cultured in 3D are resistant to infection by viruses and Toxoplasma gondii, which mimics the high resistance of syncytiotrophoblasts to microbial infections in vivo. Given that this system is genetically manipulatable, it provides a new platform to dissect the mechanisms involved in syncytiotrophoblast development and microbial resistance.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
McConkey, Cameron A, Elizabeth Delorme-Axford, Cheryl A Nickerson, Kwang Sik Kim, Yoel Sadovsky, Jon P Boyle and Carolyn B Coyne (2016). A three-dimensional culture system recapitulates placental syncytiotrophoblast development and microbial resistance. Science advances, 2(3). p. e1501462. 10.1126/sciadv.1501462 Retrieved from https://hdl.handle.net/10161/22590.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Carolyn Coyne
We study the pathways by which microorganisms cross cellular barriers and the mechanisms by which these barriers restrict microbial infections. Our studies primarily focus on the epithelium that lines the gastrointestinal tract and on placental trophoblasts, the cells that comprise a key cellular barrier of the human placenta. Our work is highly multidisciplinary and encompasses aspects of cell biology, immunology, and microbiology. Our long-term goals are to identify pathogen- and host-specific therapeutic targets to prevent or treat microbial infections and ultimately to alleviate the morbidity and mortality caused by these infections.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.