Cytokine gene polymorphisms and the outcome of invasive candidiasis: a prospective cohort study.

Abstract

BACKGROUND:  Candida bloodstream infections cause significant morbidity and mortality among hospitalized patients. Although clinical and microbiological factors affecting prognosis have been identified, the impact of genetic variation in the innate immune responses mediated by cytokines on outcomes of infection remains to be studied. METHODS:  A cohort of 338 candidemia patients and 351 noninfected controls were genotyped for single-nucleotide polymorphisms (SNPs) in 6 cytokine genes (IFNG, IL10, IL12B, IL18, IL1β, IL8) and 1 cytokine receptor gene (IL12RB1). The association of SNPs with both candidemia susceptibility and outcome were assessed. Concentrations of pro- and antiinflammatory cytokines were measured in in vitro peripheral blood mononuclear cell stimulation assays and in serum from infected patients. RESULTS:  None of the cytokine SNPs studied were associated with susceptibility to candidemia. Persistent fungemia occurred in 13% of cases. In the multivariable model, persistent candidemia was significantly associated with (odds ratio [95% confidence interval]): total parenteral nutrition (2.79 [1.26-6.17]), dialysis dependence (3.76 [1.46-8.64]), and the SNPs IL10 rs1800896 (3.45 [1.33-8.93]) and IL12B rs41292470 (5.36 [1.51-19.0]). In vitro production capacity of interleukin-10 and interferon-γ was influenced by these polymorphisms, and significantly lower proinflammatory cytokine concentrations were measured in serum from patients with persistent fungemia. CONCLUSIONS:  Polymorphisms in IL10 and IL12B that result in low production of proinflammatory cytokines are associated with persistent fungemia in candidemia patients. This provides insights for future targeted management strategies for patients with Candida bloodstream infections.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1093/cid/cir827

Publication Info

Johnson, MD, TS Plantinga, E van de Vosse, DR Velez Edwards, PB Smith, BD Alexander, JC Yang, D Kremer, et al. (2012). Cytokine gene polymorphisms and the outcome of invasive candidiasis: a prospective cohort study. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 54(4). pp. 502–510. 10.1093/cid/cir827 Retrieved from https://hdl.handle.net/10161/26106.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Johnson

Melissa DePaoli Johnson

Professor in Medicine

Prognostic indicators for patients with Candida spp. bloodstream infections
Antifungal pharmacokinetics/pharmacodynamics
Immunogenetics among patients with candidiasis
Management of the HIV infected patient and antiretroviral pharmacotherapy
Antibacterial drug utilization, resistance, and appropriate prescribing
Antimicrobial Stewardship

Smith

Phillip Brian Smith

Samuel L. Katz Distinguished Professor of Pediatrics

Dr. Smith completed his residency in pediatrics and a fellowship in neonatal medicine at Duke University Medical Center in 2004 and 2007, respectively. He completed an MHS in clinical research from Duke University in 2006 and an MPH in biostatistics from the University of North Carolina at Chapel Hill in 2009. His research is focused on pediatric drug safety, neonatal pharmacology, and the epidemiology of neonatal infections. Dr. Smith is or has been the protocol chair for more than 14 studies of drugs in infants and children. He is the Principal Investigator for the Environmental Influences on Child Health Outcomes (ECHO) Coordinating Center.

Alexander

Barbara Dudley Alexander

Professor of Medicine

Clinical research related to infectious complications of solid organ and bone marrow transplantation, with a particular interest in the treatment and rapid diagnosis of fungal disease. Training the next generation of Transplant Infectious Disease Physicians is a special focus of mine as the Principal Investigator of our Interdisciplinary T32 Training Program funded the NIH. 

Perfect

John Robert Perfect

James B. Duke Distinguished Professor of Medicine

Research in my laboratory focuses around several aspects of medical mycology. We are investigating antifungal agents (new and old) in animal models of candida and cryptococcal infections. We have examined clinical correlation of in vitro antifungal susceptibility testing and with in vivo outcome. Our basic science project examines the molecular pathogenesis of cryptococcal infections. We have developed a molecular foundation for C. neoformans, including transformation systems, gene disruptions, differential gene expression screens, and cloning pathogenesis genes. The goal of this work is to use C. neoformans as a model yeast system to identify molecular targets for antifungal drug development. There are a series of clinical trials in fungal infections which are being coordinated through this laboratory and my work also includes a series of antibiotic trials in various aspects of infections. Finally, we have now been awarded a NIH sponsored Mycology Unit for 5 years with 6 senior investigators which is focused on C. neoformans as a pathogenic model system, but will include multiple areas of medical mycology from diagnosis to treatment.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.