Defect resonances of truncated crystal structures

Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats



Defects in the atomic structure of crystalline materials may spawn electronic bound states, known as \emph{defect states}, which decay rapidly away from the defect. Simplified models of defect states typically assume the defect is surrounded on all sides by an infinite perfectly crystalline material. In reality the surrounding structure must be finite, and in certain contexts the structure can be small enough that edge effects are significant. In this work we investigate these edge effects and prove the following result. Suppose that a one-dimensional infinite crystalline material hosting a positive energy defect state is truncated a distance $M$ from the defect. Then, for sufficiently large $M$, there exists a resonance \emph{exponentially close} (in $M$) to the bound state eigenvalue. It follows that the truncated structure hosts a metastable state with an exponentially long lifetime. Our methods allow both the resonance frequency and associated resonant state to be computed to all orders in $e^{-M}$. We expect this result to be of particular interest in the context of photonic crystals, where defect states are used for wave-guiding and structures are relatively small. Finally, under a mild additional assumption we prove that if the defect state has negative energy then the truncated structure hosts a bound state with exponentially-close energy.







Jianfeng Lu

Professor of Mathematics

Jianfeng Lu is an applied mathematician interested in mathematical analysis and algorithm development for problems from computational physics, theoretical chemistry, materials science, machine learning, and other related fields.

More specifically, his current research focuses include:
High dimensional PDEs; generative models and sampling methods; control and reinforcement learning; electronic structure and many body problems; quantum molecular dynamics; multiscale modeling and analysis.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.