Semantic Understanding for Augmented Reality and Its Applications

Loading...
Thumbnail Image

Date

2020-04-08

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

494
views
484
downloads

Abstract

Although augmented reality (AR) devices and developer toolkits are becoming increasingly ubiquitous, current AR devices lack a semantic understanding of the user’s environment. Semantic understanding in an AR context is critical to improving the AR experience because it aids in narrowing the gap between the physical and virtual worlds, making AR more seamless as virtual content interacts naturally with the physical environment. A granular understanding of the user’s environment has the potential to be applied to a wide variety of problems, such as visual output security, improved mesh generation, and semantic map building of the world. This project investigates semantic understanding for AR by building and deploying a system which uses a semantic segmentation model and Magic Leap One to bring semantic understanding to a physical AR device, and explores applications of semantic understanding such as visual output security using reinforcement learning trained policies and the use of semantic context to improve mesh quality.

Description

Provenance

Citation

Citation

DeChicchis, Joseph (2020). Semantic Understanding for Augmented Reality and Its Applications. Honors thesis, Duke University. Retrieved from https://hdl.handle.net/10161/20521.


Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.