The Devil Is in the Details: Comparison of Postoperative Delirium and Neurocognitive Dysfunction.

Loading...
Thumbnail Image

Date

2019-05-24

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

76
views
36
downloads

Citation Stats

Abstract

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1097/aln.0000000000002823

Publication Info

Browndyke, Jeffrey N, Michael Devinney and Joseph P Mathew (2019). The Devil Is in the Details: Comparison of Postoperative Delirium and Neurocognitive Dysfunction. Anesthesiology. pp. 1–1. 10.1097/aln.0000000000002823 Retrieved from https://hdl.handle.net/10161/19063.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Browndyke

Jeffrey Nicholas Browndyke

Associate Professor of Psychiatry and Behavioral Sciences

Dr. Browndyke is an Associate Professor of Behavioral Health & Neurosciences in the Department of Psychiatry & Behavioral Sciences.  He has a secondary appointment as Assistant Professor of Cardiovascular & Thoracic Surgery.

Dr. Browndyke's research interests involve the use of advanced neurocognitive and neuroimaging techniques for perioperative contributions to delirium and later dementia risk, monitoring of late-life neuropathological disease progression, and intervention/treatment outcomes.  His research also involves novel telehealth methods for remote neurocognitive evaluation and implementation of non-invasive neuromodulatory techniques to assist in postoperative recovery and dementia risk reduction.

Dr. Browndyke's clinical expertise is focused upon geriatric neuropsychology with an emphasis in the assessment, diagnosis, and treatment of dementia and related disorders in adults and US veteran patient populations.

Devinney

Michael Devinney

Assistant Professor of Anesthesiology

My work uses translational neuroscience approaches, such as cerebrospinal fluid molecular assays, sleep EEG, cognitive testing, and delirium assessment to identify mechanisms of delirium. Delirium is a syndrome of disrupted attention and consciousness that occurs in ~20% of the >19 million older surgery patients and ~50% of the >5 million intensive care unit (ICU) patients in the United States every year. Delirium is also associated with increased risk for Alzheimer’s disease and related dementias (ADRD), yet there are no FDA-approved drugs to prevent it, due to a major gap in our understanding of its underlying mechanisms.  Our current work aims to discover potential mechanisms of delirium that could be targeted in future studies. We have recently found that increased blood-brain barrier dysfunction is associated with postoperative delirium, but it is unknown what inflammatory mediators actually cross the disrupted blood-brain barrier to drive delirium. Using mass spectrometry proteomics, we are examining the relationship of proteins and inflammatory markers found in the cerebrospinal fluid 24-hours following surgery with postoperative delirium. We are also interested in strategies that potentially protect the blood-brain barrier following surgery. Since sleep disruptions can cause blood-brain barrier dysfunction, we are conducting a study to determine the efficacy of suvorexant to improve postoperative sleep and reduce delirium severity in older surgical patients. Finally, we are working to extend these investigations to ICU patients, who are often more severely affected by delirium and more frequently develop long-term sequelae such as post-ICU long-term cognitive impairment (that is similar in magnitude to Alzheimer’s disease and related dementias).

Mathew

Joseph P. Mathew

Jerry Reves, M.D. Distinguished Professor of Cardiac Anesthesiology

Current research interests include:
1. The relationship between white matter patency, functional connectivity (fMRI) and neurocognitive function following cardiac surgery.
2. The relationship between global and regional cortical beta-amyloid deposition and postoperative cognitive decline.
3. The effect of lidocaine infusion upon neurocognitive function following cardiac surgery.
4. The association between genotype and outcome after cardiac surgery.
5. Atrial fibrillation following cardiopulmonary bypass.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.