Energy design for dense neighborhoods: One heat pump rejects heat, the other absorbs heat from the same loop

Loading...
Thumbnail Image

Date

2015-06-29

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

147
views
254
downloads

Citation Stats

Abstract

© 2015 Elsevier Masson SAS. This paper documents the joint performance of heat pumps that are served by a common loop buried in the ground, and which operate simultaneously: one heat pump absorbs heat from the buried loop whereas the other one rejects heat. A background flow is circulated in the underground loop even when the two heat pumps are not operating. The objective is to determine the performance and the manner in which it is affected by the way in which the two heat pumps are connected to the loop. The performance measures are the heat transfer rates into and out of the heat pumps, and the total pumping power required by the assembly. The paper documents the individual performance of the heat pumps, and their relative performance, which is the ratio of heating absorbed by one pump to the heating rejected by the other pump.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1016/j.ijthermalsci.2015.05.007

Publication Info

Almerbati, A, S Lorente and A Bejan (2015). Energy design for dense neighborhoods: One heat pump rejects heat, the other absorbs heat from the same loop. International Journal of Thermal Sciences, 96. pp. 227–235. 10.1016/j.ijthermalsci.2015.05.007 Retrieved from https://hdl.handle.net/10161/15205.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Bejan

Adrian Bejan

J.A. Jones Distinguished Professor of Mechanical Engineering

Professor Bejan was awarded the Benjamin Franklin Medal 2018 and the Humboldt Research Award 2019. His research covers engineering science and applied physics: thermodynamics, heat transfer, convection, design, and evolution in nature.

He is ranked among the top 0.01% of the most cited and impactful world scientists (and top 10 in Engineering world wide) in the 2019 citations impact database created by Stanford University’s John Ioannidis, in PLoS Biology.  He is the author of 30 books and 700 peer-referred articles. His h-index is 111 with 92,000 citations on Google Scholar. He received 18 honorary doctorates from universities in 11 countries.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.