Engineering of obligate intracellular bacteria: progress, challenges and paradigms.
Date
2017-06-19
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
It is estimated that approximately one billion people are at risk of infection with obligate intracellular bacteria, but little is known about the underlying mechanisms that govern their life cycles. The difficulty in studying Chlamydia spp., Coxiella spp., Rickettsia spp., Anaplasma spp., Ehrlichia spp. and Orientia spp. is, in part, due to their genetic intractability. Recently, genetic tools have been developed; however, optimizing the genomic manipulation of obligate intracellular bacteria remains challenging. In this Review, we describe the progress in, as well as the constraints that hinder, the systematic development of a genetic toolbox for obligate intracellular bacteria. We highlight how the use of genetically manipulated pathogens has facilitated a better understanding of microbial pathogenesis and immunity, and how the engineering of obligate intracellular bacteria could enable the discovery of novel signalling circuits in host-pathogen interactions.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
McClure, Erin E, Adela S Oliva Chávez, Dana K Shaw, Jason A Carlyon, Roman R Ganta, Susan M Noh, David O Wood, Patrik M Bavoil, et al. (2017). Engineering of obligate intracellular bacteria: progress, challenges and paradigms. Nat Rev Microbiol. 10.1038/nrmicro.2017.59 Retrieved from https://hdl.handle.net/10161/15149.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Raphael H. Valdivia
My laboratory is interested in microbes that influence human health, both in the context of host-pathogen and host-commensal interactions. For many pathogens, and certainly for most commensal microbes, we have an incomplete molecular understanding of how host and microbial factors contribute to health and disease. My research group focuses on two experimental systems:
Chlamydia trachomatis infections are responsible for the bulk of sexually transmitted bacterial diseases and are the leading cause of infectious blindness (trachoma) in the world. Chlamydia resides within a membrane bound compartment (“inclusion”). From this location, the pathogen manipulates the cytoskeleton, inhibits lysosomal recognition of the inclusion, activates signaling pathways, re-routes lipid transport, and prevents the onset of programmed cell death. Our laboratory focuses on identifying and characterizing the bacterial factors that are secreted into the host cell cytoplasm to manipulate eukaryotic cellular functions. We use a combination of cell biology, biochemistry, genetics, genomics, proteomics and molecular biology to determining the function of virulence factors that reveal novel facets of the host-pathogen interaction. Our goal is to understand how these obligate intracellular bacterial pathogens manipulate host cellular functions to replicate, disseminate and cause disease, and in the process develop strategies to ameliorate the damage caused by these infections to the female reproductive organs.
Akkermansia muciniphila is prevalent member of the gut microbiota that proliferates in the mucus layers of our lower gastrointestinal tract and contribute to nutrient homeostasis and human immunological health. My research group developed genetic tools to characterize these microbes to define the mechanisms used to colonize the human gut and identify the molecular and cellular pathways that underscore Akkermansia's impact on immune homeostasis. In the process, we seek to engineer strains of Akkermansia that enhance their probiotic potential.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.