Continuous And Simultaneous Emg-Based Neural Network Control Of Transradial Prostheses
Date
2011
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Attention Stats
Abstract
As the development of dexterous prosthetic hand and wrist units continues, there is a need for command interfaces that will enable a user to operate these multi-joint devices in a natural, coordinated manner. In this study, myoelectric signals and hand kinematics were recorded as three able-bodied subjects performed a variety of individuated movements and simulated functional tasks. Time-delayed artificial neural networks (TDANNs) were designed to simultaneously decode the movement trajectories for seven distal degrees of freedom (pronation-supination, wrist ulnar-radial deviation, wrist flexion-extension, thumb rotation, thumb abduction-adduction, finger MCP flexion-extension, and finger PIP flexion-extension). Performance was quantified by calculating the variance accounted for (VAF) and normalized root-mean-square error (NRMSE) between the decoded and actual movements. Accurate predictions were achieved (VAF: 0.57-0.80, NRMSE: 0.04-0.11), suggesting that it may be possible to provide an intuitive EMG-based scheme that provides continuous and simultaneous multi-joint control for individuals with below-elbow amputations.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Collections
Copyright 2002, 2005 and 2008, The University of New Brunswick.
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
