A five year study of floristic succession in a restored urban wetland

Loading...
Thumbnail Image

Date

2013-12-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

106
views
420
downloads

Citation Stats

Abstract

The Stream and Wetland Assessment Management Park (SWAMP) project created a wetland-stream complex that encompasses a wide array of micro-environments and hydrology. These diverse habitats were designed to facilitate ecosystem diversity via enhanced pathways for ecological succession during restoration. We took an empirical approach to examine floral succession under natural processes following wetland restoration of floodplain and marsh habitats. Survey plots were set up in four forest gaps in palustrine wetlands, each containing a Low Marsh and a High Marsh. During five years of recovery from the soil disturbance and upland vegetation removal, wetland species richness gradually increased from 24 to 38 species in the Low Marshes, where waterlogged conditions precluded upland species invasions. Conversely, upland species richness quickly declined from 69 to 29 species over time in the High Marsh, now subjected to increase flooding. The species successional patterns suggest a slower turnover in the wet Low Marsh, but faster turnover in the moist High Marsh. Following the intermediate disturbance hypothesis, we observed that High Marsh species richness reached its maximum in the first year of the vegetation survey, whereas even after five years the plant diversity in the Low Marsh has yet to peak. The once widespread Ligustrum sinense (Chinese privet) was decimated following the SWAMP restoration. However, the exotic invasive species, Microstegium vimineum (Japanese stilt grass) dominated the floodplain except in the wettest Low Marsh sites. Given the successional patterns of increased wetland species following restoration, we recommend removal of woody invasive species such as L. sinense to prevent their re-establishment followed by long-term monitoring and continued removal (5-7 years) of invasive species to allow native species establishment. Our study shows that the creation of wetter floodplain habitats with increased flooding suppresses the establishment of the highly invasive M. vimineum. © 2013 Elsevier B.V.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1016/j.ecoleng.2013.05.001

Publication Info

Ho, M, and CJ Richardson (2013). A five year study of floristic succession in a restored urban wetland. Ecological Engineering, 61. pp. 511–518. 10.1016/j.ecoleng.2013.05.001 Retrieved from https://hdl.handle.net/10161/15713.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Richardson

Curtis J. Richardson

Research Professor of Resource Ecology in the Division of Environmental Science and Policy

Curtis J. Richardson is Professor of Resource Ecology and founding Director of the Duke University Wetland Center in the Nicholas School of the Environment. Dr. Richardson earned his degrees from the State University of New York and the University of Tennessee.

His research interests in applied ecology focus on long-term ecosystem response to large-scale perturbations such as climate change, toxic materials, trace metals, flooding, or nutrient additions. He has specific interests in phosphorus nutrient dynamics in wetlands and the effects of environmental stress on plant communities and ecosystem functions and services. The objectives of his research are to utilize ecological principles to develop new approaches to environmental problem solving. The goal of his research is to provide predictive models and approaches to aid in the management of ecosystems.

Recent research activities: 1) wetland restoration of plant communities and its effects on regional water quality and nutrient biogeochemical cycles, 2) the development of ecosystem metrics as indices of wetland restoration success, 3) the effects of nanomaterial on wetland and stream ecosystem processes, 4) the development of ecological thresholds along environmental gradients, 5) wetland development trends and restoration in coastal southeastern United States, 6) the development of an outdoor wetland and stream research and teaching laboratory on Duke Forest, 7) differential nutrient limitation (DNL) as a mechanism to overcome N or P limitations across trophic levels in wetland ecosystems, and 8) carbon sequestration in coastal North Carolina pocosins.

Richardson oversees the main analytical lab in NSOE, which is open to students and faculty. Dr. Richardson has been listed in Who's Who in Science™ annually since 1989 and was elected President of the Society of Wetland Scientists in 1987-88. He has served on many editorial review committees for peer-reviewed scientific journals, and he is a past Chair of the Nicholas School Division of Environmental Sciences and Policy. Dr. Richardson is a Fellow of the American Association for the Advancement of Science, the Society of Wetland Scientists, and the Soil Science Society of America.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.