Meta-Analysis of COVID-19 BAL Single-Cell RNA Sequencing Reveals Alveolar Epithelial Transitions and Unique Alveolar Epithelial Cell Fates.
Date
2023-12
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Single-cell RNA sequencing (scRNA-seq) of BAL cells has provided insights into coronavirus disease (COVID-19). However, reports have been limited by small patient cohorts. We performed a meta-analysis of BAL scRNA-seq data from healthy control subjects (n = 13) and patients with COVID-19 (n = 20), sourced from six independent studies (167,280 high-quality cells in total). Consistent with the source reports, increases in infiltrating leukocyte subtypes were noted, several with type I IFN signatures and unique gene expression signatures associated with transcellular chemokine signaling. Noting dramatic reductions of inferred NKX2-1 and NR4A1 activity in alveolar epithelial type II (AT-II) cells, we modeled pseudotemporal AT-II-to-AT-I progression. This revealed changes in inferred AT-II cell metabolic activity, increased transitional cells, and a previously undescribed AT-I state. This cell state was conspicuously marked by the induction of genes of the epidermal differentiation complex, including the cornified envelope protein SPRR3 (small proline-rich protein 3), upregulation of multiple KRT (keratin) genes, inferred mitochondrial dysfunction, and cell death signatures including apoptosis and ferroptosis. Immunohistochemistry of lungs from patients with COVID-19 confirmed upregulation and colocalization of KRT13 and SPRR3 in the distal airspaces. Forced overexpression of SPRR3 in human alveolar epithelial cells ex vivo did not activate caspase-3 or upregulate KRT13, suggesting that SPRR3 marks an AT-I cornification program in COVID-19 but is not sufficient for phenotypic changes.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Karmaus, Peer WF, Aleksandra Tata, Julie M Meacham, Frank Day, David Thrower, Purushothama Rao Tata and Michael B Fessler (2023). Meta-Analysis of COVID-19 BAL Single-Cell RNA Sequencing Reveals Alveolar Epithelial Transitions and Unique Alveolar Epithelial Cell Fates. American journal of respiratory cell and molecular biology, 69(6). pp. 623–637. 10.1165/rcmb.2023-0077oc Retrieved from https://hdl.handle.net/10161/30075.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Aleksandra Tata
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.