A model-based simulation framework for coupled acoustics, elastodynamics, and damage with application to nano-pulse lithotripsy
Date
2024-03-01
Authors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
We develop a model for solid objects surrounded by a fluid that accounts for the possibility of acoustic pressures giving rise to damage on the surface of the solid. The propagation of an acoustic pressure in the fluid domain is modeled by the acoustic wave equation. On the other hand, the response of the solid is described by linear elastodynamics coupled with a gradient damage model, one that is based on a cohesive-type phase-field description of fracture. The interaction between the acoustic pressure and the deformation and damage of the solid are represented by transmission conditions at the fluid–solid interface. The resulting governing equations are discretized using a finite-element/finite-difference method that pays particular attention to the spatial and temporal scales that need to be resolved. Results from model-based simulations are provided for a benchmark problem as well as for recent experiments in nano-pulse lithotripsy. A parametric study is performed to illustrate how damage develops in response to the driving force (magnitude and location of the acoustic source) as a function of the fracture resistance of the solid. The results are shown to be qualitatively consistent with experimental observations for the location and size of the damage fields on the solid surface. A study of limiting cases also suggests that both the threshold for damage and the critical fracture energy are important to consider in order to capture the transition from damage initiation to complete localization. A low-cycle fatigue model is proposed that degrades the fracture resistance of the solid as a function of accumulated tensile strain energy, and it is shown to be capable of capturing damage localization in simulations of multi-pulse nano-pulse lithotripsy.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Liu, Y, P Zhong, O Lopez-Pamies and JE Dolbow (2024). A model-based simulation framework for coupled acoustics, elastodynamics, and damage with application to nano-pulse lithotripsy. International Journal of Solids and Structures, 289. pp. 112626–112626. 10.1016/j.ijsolstr.2023.112626 Retrieved from https://hdl.handle.net/10161/31457.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Pei Zhong
My research focuses on engineering and technology development with applications in the non-invasive or minimally invasive treatment of kidney stone disease via shock wave and laser lithotripsy, high-intensity focused ultrasound (HIFU) and immunotherapy for cancer treatment, acoustic and optical cavitation, and ultrasound neuromodulation via sonogenetics.
We are taking an integrated and translational approach that combines fundamental research with engineering and applied technology development to devise novel and enabling ultrasonic, optical, and mechanical tools for a variety of clinical applications. We are interested in shock wave/laser-fluid-bubble-solid interaction, and resultant mechanical and thermal fields that lead to material damage and removal. We also investigate the stress response of biological cell and tissue induced by cavitation and ultrasound exposure, mediated through mechanosensitive ion channels, such as Piezo 1. Our research activities are primarily supported by NIH and through collaborations with the medical device industry.

John Everett Dolbow
Professor John E. Dolbow came to Duke University from Northwestern University, where he received an MS and PhD in Theoretical and Applied Mechanics. During the course of his graduate study, John was a Computational Science Graduate Fellow for the Department of Energy, and he spent a summer working at Los Alamos National Laboratory. Dr. Dolbow's research concerns the development of computational methods for nonlinear problems in solid mechanics. In particular, he is interested in the use of modern computational methods to model quasi-static and dynamic fracture of structural components and the evolution of interfaces. A native of New Hampshire, Dr. Dolbow received his Bachelor's Degree in mechanical engineering from the University of New Hampshire. In 2020, he became an Assistant Vice President for Research for Duke University.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.