Expanding the Concept of Diagnostic Reference Levels to Noise and Dose Reference Levels in CT.


OBJECTIVE. Diagnostic reference levels were developed as guidance for radiation dose in medical imaging and, by inference, diagnostic quality. The objective of this work was to expand the concept of diagnostic reference levels to explicitly include noise of CT examinations to simultaneously target both dose and quality through corresponding reference values. MATERIALS AND METHODS. The study consisted of 2851 adult CT examinations performed with scanners from two manufacturers and two clinical protocols: abdominopelvic CT with IV contrast administration and chest CT without IV contrast administration. An institutional informatics system was used to automatically extract protocol type, patient diameter, volume CT dose index, and noise magnitude from images. The data were divided into five reference patient size ranges. Noise reference level, noise reference range, dose reference level, and dose reference range were defined for each size range. RESULTS. The data exhibited strong dependence between dose and patient size, weak dependence between noise and patient size, and different trends for different manufacturers with differing strategies for tube current modulation. The results suggest size-based reference intervals and levels for noise and dose (e.g., noise reference level and noise reference range of 11.5-12.9 HU and 11.0-14.0 HU for chest CT and 10.1-12.1 HU and 9.4-13.7 HU for abdominopelvic CT examinations) that can be targeted to improve clinical performance consistency. CONCLUSION. New reference levels and ranges, which simultaneously consider image noise and radiation dose information across wide patient populations, were defined and determined for two clinical protocols. The methods of new quantitative constraints may provide unique and useful information about the goal of managing the variability of image quality and dose in clinical CT examinations.





Published Version (Please cite this version)


Publication Info

Ria, Francesco, Joseph T Davis, Justin B Solomon, Joshua M Wilson, Taylor B Smith, Donald P Frush and Ehsan Samei (2019). Expanding the Concept of Diagnostic Reference Levels to Noise and Dose Reference Levels in CT. AJR. American journal of roentgenology. pp. 1–6. 10.2214/ajr.18.21030 Retrieved from https://hdl.handle.net/10161/18963.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Francesco Ria

Assistant Professor of Radiology

Dr. Francesco Ria is a medical physicist and he serves as an Assistant Professor in the Department of Radiology. Francesco has an extensive expertise in the assessment of procedure performances in radiology. In particular, his research activities focus on the simultaneous evaluation of radiation dose and image quality in vivo in computed tomography providing a comprehensive evaluation of radiological exams. Moreover, Francesco is developing and investigating novel mathematical models that, uniquely in the radiology field, can incorporate a comprehensive and quantitative risk-to-benefit assessment of the procedures; he is continuing to apply his expertise towards the definition of new patient specific risk metrics, and in the assessment of image quality in vivo also using state-of-the-art imaging technology, such as photon counting computed tomography scanners, and machine learning reconstruction algorithms.

Dr. Ria is a member of the American Association of Physicists in Medicine task group 392 (Investigation and Quality Control of Automatic Exposure Control System in CT), of the American Association of Physicists in Medicine Public Education working group (WGATE), and of the Italian Association of Medical Physics task group Dose Monitoring in Diagnostic Imaging.


Joshua Wilson

Assistant Professor of Radiology

Donald Paul Frush

Professor of Radiology

Current research interests are in the field of pediatric radiology. CT technology and application to children. Clinical interests include magnetic resonance imaging, sonography, computer tomography and sedation. Special interest in historical material in pediatric radiology.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.